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Abstract — Time series forecasting is an active 
research area that has drawn considerable attention 
for applications in a variety of fields. In recent years 
various types of seasonal time series models have been 
developed in both industrial and financial markets. 
The accuracy of forecasting is known to be one of the 
most important factors to value the models. 
Therefore, many researches have been made to 
enhance the efficiency of seasonal forecasting models. 
In this paper performance of four seasonal interval 
time series models including seasonal autoregressive 
integrated moving average (SARIMA), fuzzy seasonal 
autoregressive integrated moving average 
(FSARIMA), fuzzy seasonal multi-layer perceptron 
(FSMLP), and Watada models are compared together 
and they are applied to forecast two seasonal time 
series data, the total production value of the Taiwan 
machinery industry and the sales volume of soft 
drinks. Empirical results show that the obtained 
interval of the FSMLP is narrower than the ones of 
other those used models, so that the FMSLP would be 
the most satisfactory among all mentioned ones. 
 
Keyword — Seasonal interval forecasting; Multi 
Layer perceptrons (MLPs); Seasonal Auto-Regressive 
Integrated Moving Average (SARIMA); Fuzzy logic 
and Fuzzy models; Industrial and financial time 
series. 
 
1. Introduction 
With the fast development of new technologies and the 
stiff competition among the various enterprises, the 
whole business environment has become more dynamic 
and unstable. It is crucial for the enterprises to arrive at 
accurate and quick-response decisions. Hence, effective 
forecasting is essential for the enterprises to identify 
future technological trends and customer demands [1]. 
Many industrial and financial time series exhibit seasonal 
and trend variations. The seasonal time series is a 
sequence of seasonal data points recorded sequentially in 
time. Although seasonal variations are perhaps the most 
significant component in a seasonal time series, a 
stochastic trend is often accompanied with the seasonal 

variations and can have a significant impact on various 
forecasting methods. A time series with trend is 
considered to be nonstationary and often needs to be 
made stationary before modeling and forecasting 
processes take place. Accurate forecasting of seasonal 
and trend time series is very important for effective 
decisions. Thus, how to model and forecast seasonal and 
trend time series has long been a major research topic 
that has significant practical implications. [2].  
In the literature of seasonal time series forecasting, many 
works have been devoted to develop and improve 
seasonal time series models over the past several 
decades. These models can be generally classified in 
linear and nonlinear models. The SARIMA model is one 
of the most popular approaches in linear time series 
models. The SARIMA model has been successfully 
utilized in many fields, such as in forecasting social, 
economic, medical, industrial, financial problems [3]. 
The popularity of the SARIMA models is due to their 
statistical properties as well as to the well-known Box–

Jenkins methodology [4] in the model building process. 
According to the Box–Jenkins methodology, SARIMA 
models require that the data be seasonally differenced to 
achieve stationarity condition [4].  
Second class is nonlinear models. The recent up-surging 
research activities in artificial neural networks (ANNs) as 
well as their numerous successful forecasting 
applications suggest that they can also be an important 
candidate for seasonal and trend time series forecasting. 
Several distinguishing features of ANNs make them 
valuable and attractive for a forecasting task. The major 
advantage of neural networks is their flexible nonlinear 
modeling capability, which can approximate any 
continuous measurable function with arbitrarily desired 
accuracy [5]. No prior assumption of the model form is 
required in the model building process. Instead, the 
network model is largely determined by the 
characteristics of the data [6]. Commonly used neural 
networks include multi-layer perceptrons (MLPs), radial 
basis functions (RBFs), probabilistic neural networks 
(PNNs), and general regression neural networks 
(GRNNs).  
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Improving forecasting especially time series forecasting 
accuracy is an important yet often difficult task facing 
decision-makers in many areas; therefore, several 
researchers have proposed different seasonal time series 
models and they have used hybrid models or combined 
several models in order to improve the accuracy of 
forecasting. Reference [7] constructed a hybrid 
methodology that exploits the unique strength of the 
seasonal autoregressive integrated moving average 
(SARIMA) model and the support vector machines 
(SVM) model in forecasting seasonal time series. 
Reference [8] proposed using a hybrid model called 
SARIMABP that combines the seasonal autoregressive 
integrated moving average (SARIMA) model and the 
back-propagation (BP) neural network model to predict 
seasonal time series data. Reference [9] proposed a fuzzy 
seasonal ARIMA (FSARIMA) forecasting model, which 
combines the advantages of the seasonal time series 
ARIMA (SARIMA) model and the fuzzy regression 
model. Reference [10] proposed a hybrid approach based 
on the partial high order bivariate fuzzy time series 
models in order to analyse the seasonal fuzzy time series. 
Reference [11] developed a seasonal support vector 
regression (SSVR) model to forecast seasonal time series 
data. Reference [12] proposed a hybrid model that 
combines the seasonal autoregressive integrated moving 
average (SARIMA) model and grey system theory to 
forecast MSW generation at multiple time scales without 
needing to consider other variables such as demographics 
and socioeconomic factors. 
In this paper, the performance of four different seasonal 
interval time series models, Seasonal Auto-Regressive 
Integrated Moving Average model (SARIMA), Fuzzy 
Seasonal Auto-Regressive Integrated Moving Average 
(FSARIMA), Fuzzy Seasonal Multi-Layer Perceptron 
(FSMLP) and Watada models are compared for industrial 
and financial markets forecasting. The rest of the paper is 
organized as follows. In the next section, basic concepts 
of four used seasonal time-series models are briefly 
reviewed. Empirical results of machinery industry 
forecasting are presented in Section 3. The performance 
of each model is compared together in section 4, and 
finally the conclusions are discussed. 
 
2. Seasonal Interval Time Series Models  
There are several different approaches for time series 
modelling. Interval models are a special class of the 
quantitative forecasting models, in which an interval is 
calculated as optimum forecast of independent variable. 
In this section, four used seasonal interval models are 
briefly reviewed. 
2.1. Seasonal Auto-Regressive Integrated Moving 

Average model (SARIMA) 
In a seasonal time series, there are two types of 
variations: The first type is between consecutive 
observations, while the second one is between pairs of 

corresponding observations belonging to consecutive 
seasons. ARIMA (p,d,q) models can be constructed to 
depict the relationship between consecutive observation 
values, whereas ARIMA (P,D,Q)s models can be formed 
to show the relationship between corresponding 
observation values of consecutive seasons. A time series 

t{ y t 1,2,...,k } is generated by SARIMA (p,d,q) 

(P,D,Q)s process of Box-Jenkins time series model with 
the mean  if:  

(1) s d D s
p P s t Q q tB B y B B a  

Where ty  and ta  are the observed values and random 

errors at time period t, t 1,2,...,k ,respectively, 
p i

p ii 1
B 1 B ,  and 

q i
q ii 1

B 1 B ,  are 

the nonseasonal autoregressive operator and moving 
average (MA) operator, respectively, 

Ps is
P isi 1

B 1 B ,  and 
Qs is

Q isi 1
B 1 B ,  are the seasonal AR operator 

and MA operator, respectively, B is the backshift 

operator, 
dd 1 B  is the nonseasonal dth 

differencing, 
DD s

s 1 B  is the seasonal Dth 

differencing at s number of lags, s is equals 12 months, p 
is the order of nonseasonal AR process, P the order of 
seasonal AR process, q the order of nonseasonal MA 
process, and Q the order of seasonal MA process. The 
Box–Jenkins [3] methodology for fitting a seasonal 
autoregressive integrated moving average model to data 
involves the following four-step iterative cycles: 
(a) Identify the SARIMA (p,d,q) (P,D,Q)s structure;  
(b) Estimate unknown parameters; 
(c) Perform goodness-of-fit tests on the estimated 

residuals; 
(d) Forecast future outcomes based on the known data. 
The basic idea of model identification is that if a time 
series is generated from an ARIMA process, it should 
have some theoretical autocorrelation properties. By 
matching the empirical autocorrelation patterns with the 
theoretical ones, it is often possible to identify one or 
several potential models for the given time series. 
Reference [4] proposed to use the autocorrelation 
function (ACF) and the partial autocorrelation function 
(PACF) of the sample data as the basic tools to identify 
the order of the ARIMA model. Some other order 
selection methods have been proposed based on validity 
criteria, the information-theoretic approaches such as the 
Akaike’s information criterion (AIC) [13] and the 
minimum description length (MDL) [14]-[16]. In 
addition, in recent years different approaches based on 
intelligent paradigms, such as neural networks [17], 
genetic algorithms [18], [19] or fuzzy system [20] have 
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been proposed to improve the accuracy of order selection 
of ARIMA models.  
2.2. Fuzzy Seasonal Auto-Regressive Integrated 

Moving Average (FSARIMA) 
The parameter of SARIMA (p, d, q) (P, D, Q)s, 

1 2 p, ,...., , 1 2 P, ,...., ; 1 2 q, ,...., and 

1 2 Q, ,...., are all crisp values. The SARIMA model is 

a precise forecasting model for short time periods, 
although it is limited by the large amount of historical 
data required. However, we usually have to forecast 
future situations using limited amounts of data in a short 
span of time. So this model addresses the limitations of 
real world applications [21]. Instead of using crisp, fuzzy 

parameters, 1 2 p, ,....,   , 1 2 P, ,....,   , 1 2 q, ,....,   , 

and 1 2 Q, ,....,    in the form of triangular fuzzy 

numbers are used. A FSARIMA (p, d, q)(P, D,Q)s model 
is described by a fuzzy function with fuzzy parameter  

(2) s s
t q tB B W B B a    

(3) Dd s
t tW 1 B 1 B Z  

(4) 

p P

t i t i i t isi 1 i 1

p P

i j t i jsi 1 j 1

q Q

i t i i t isi 1 i 1

q Q

i j t i jsi 1 j 1

W W W

W

a a

a

 

 

 

 

 

Where tZ  are observations, 1 2 p, ,....,   , 

1 2 P, ,....,   , 1 2 q, ,....,   , and 1 2 Q, ,....,    are fuzzy 

numbers. Now (4) can be modified as follows: 

(5) 

p P

t i t i p i t isi 1 i 1

P p

i p j t i jsj 1 i 1

q Q

p P i t i p P q i t isi 1 i 1

Q q

p P i p P q j t i jsj 1 i 1

W W W

W

a a

a





 

 

 

Fuzzy parameters in the form of triangular fuzzy 
numbers are used 

(6) 
i

i i
i i i i i

i i

1 if c c ,
c

0 otherwise,

 

Where i  is the membership function of the fuzzy 

set that represents parameter i i,  is the center of the 

fuzzy number, and ic  is the width or spread around the 

centre of the fuzzy number. Using the extension 
principle, and approximation formula as follows to get 
fuzzy multiplication 

(7) i j i j i j i jA A c c ,a a ,b b  

Where i i i iA c ,a ,b  and j j j jA c ,a ,b  are triangular 

fuzzy numbers. The fuzzy multiplication of i p j
   will 

be given as: 

(8) i p j i p j i p j i p jc c ,a a ,b b   

Now, applying fuzzy parameters i
  in the form of 

triangular fuzzy numbers the membership of W in (5) is 
given as: 

(9) 
t t

t t
ttW

W E
1 for W 0, a 0,FW

0 Otherwise
  

Where  

(10) 

p P

t 0 i t i p i t isi 1 i 1

P p

i p j t js i tj 1 i 1

q Q

p P i t i p P q i t isi 1 i 1

Q q

p P i p P q j t js ij 1 i 1

E W W

W a

a a

a ,

 

(11) 

p P

t 0 i t i p i t isi 1 i 1

P p

i p j t js ij 1 i 1

q Q

p P i t i p P q i t isi 1 i 1

Q q

p P i p P q j t js ij 1 i 1

F c c W c W

c c W

c a a

c c a .

 

Simultaneously, tZ  represents the tth observation, and h-
level is the threshold value representing the degree to 
which the model should satisfy all the data points 

1 2 tZ ,Z ,....,Z . The problem of finding the fuzzy seasonal 
ARIMA parameters using threshold value is formulated 
as the following linear programming problem: 
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(12) 

k

t
t 1

t t t

t t t

Minimize S F

E 1 h F W t 1,2,....,k ,

subject.to E 1 h F W t 1,2,...,k ,

c 0 ,

 

2.3. Fuzzy Seasonal Multi-Layer Perceptron (FSMLP)  
In fuzzy seasonal multi-layer perceptron model, a 
seasonal autoregressive integrated moving average model 
is initially fitted in order to model the linear component 
( tL ) of time series ty . Results are the estimation of 

actual values of time series ( tL̂ ) and model parameters as 
follows:  

(13) 

p pP P

t i t i js t js i js t i js t
i 1 j 1 i 1 j 1

q Q q Q

i t i js t js i js t i js
i 1 j 1 i 1 j 1

z z z z a

a a a ,
 

where, p p 1,2,..., p , and q q 1,2,...,q  are the 

seasonal ARIMA nonseasonal parameters, and 

P P 1,2,...,P , and Q Q 1,2,...,Q  are the 

SARIMA seasonal parameters, 
D dd D s

t s t tz y 1 B 1 B y  in 

which B is the backward shift operator, D and d are 
integers and often referred to as order of seasonal and 
nonseasonal differencing, respectively. Considering a 
seasonal time series to be composed of a linear and a 
nonlinear component ( t t ty N L ), the SARIMA model 

cannot model the nonlinear seasonal patterns ( tN ); 
hence, the residual of SARIMA model will contain only 

the nonlinear seasonal patterns ( t t t
ˆe y L ). Therefore, 

in the second phase, a neural network is used to model 
the SARIMA residuals. By modelling residuals and using 
artificial neural networks, nonlinear seasonal 
relationships can be discovered. With M input nodes, the 
ANN model for the residuals will be [5]:  

(14) 

t t 1 t M t

N M

0 j 0 j i , j t i tj 1 i 1

N

j t , j tj 0

e f ( e ,...,e )

w w g( w w e )

w u ,

 

Where, f is a nonlinear function determined by the neural 

network, 
M

t , j 0 j i , j t ii 1
u g( w w e ) , and t  is the 

random error. Note that if the model f is not an 
appropriate one, the error term is not necessarily random. 
Therefore, the correct model identification is critical. The 
forecast from (13) denoted as tN , the combined forecast 
will be:  

(13) 

p P

t t t i t i js t js
i 1 j 1

p qP

i js t i js i t i
i 1 j 1 i 1

Q q Q

js t js i js t i js
j 1 i 1 j 1

N

0 j t , jj 1

ˆ ˆẑ L N ( z z

z a

a z )

( w w u ).

 

In next section, we will consider the parameters of the 
two mentioned models ( p p 1,2,..., p , 

q q 1,2,...,q , P P 1,2,...,P , Q Q 1,2,...,Q

, and jw j 0,1,2,...,N ), in the form of triangular 

fuzzy numbers ( p p 1,2,..., p , q q 1,2,...,q , 

P P 1,2,...,P , Q Q 1,2,...,Q , and 

jw j 0,1,2,...,N . Then the fuzzy regression will be 

used to calculate the fuzzy parameters. In addition, this 
study adapts the methodology formulated by [22] for 
condition which includes a wide spread of the forecasted 
interval. A FSMLP model is described by a fuzzy 
parameter as follows: 

(16) 

p pP P

t i t i js t js i js t i js
i 1 j 1 i 1 j 1

q Q

i t i js t js
i 1 j 1

q Q N

i js t i js j t , j
i 1 j 1 j 0

z z z z

a a

z w u .

  

 

  

 
Now, (15) is modified as: 

(17) 
1 1

1 11 1

2

22

p P

t ij t i jsi 0 j 0

l q l Q

ij t i j si l j l

l N

i t ,ii l

z z

a

u .
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where, 0,0 0 , i ,0 i
  , 0, j js

  , i , j i js
    for 

i 0,1,2,..., p , j 0,1,2,...,P ; and 
l ll ,l 0 , 

1 li ,l i
  , 

10 , j js
  , 

1i1 , j i js
    for 

1 1 1 1i l ,l 1,...,l q , 1 1 1 1j l ,l 1,...,l Q , 

1l P p , 1 1i i l ; and i iw   for 

2 2 2 2i l ,l 1,...,l N , 2l P p q Q , and 

2 2i i l . Then, fuzzy parameters in the form of 
triangular fuzzy numbers as (6) are used. Using fuzzy 
parameters i  in the form of triangular fuzzy numbers 
and applying the extension principle, it becomes clear 

that the membership of tZ  in (17) is given as (18).  

Simultaneously, tz  represents the tth observation and h-
level is the threshold value representing the degree to 
which the model should satisfy all the data points 

1 2 kz ,z ,...,z [23].  

(19) z tz h for t 1,2,....,k .  

The index t refers to the number of nonfuzzy data used 
for constructing the model. On the other hand, the 
fuzziness S included in the model is defined by: 

(20) 1 1

1 11 1

2

22

k p P

ij t i jst 1 i 0 j 0

k l q l Q

ij t i j st 1 i l j l

k l N

i t ,it 1 i l

S c z

c a

c u ,

 

where, i  is the nonseasonal autoregressive coefficient 

of the time lag i, is  is the seasonal autoregressive 

coefficient of the time lag is, i  is the nonseasonal 

moving average coefficient of the time lag i, is  is the 
seasonal moving average coefficient of the time lag is, 
and iw is the connection weight between output neuron 
and ith hidden neuron.  
 
3. Application of seasonal models for 
forecasting  
In this section, the appropriateness and effectiveness of 
four aforementioned seasonal time series models are 
compared together in applications of the total production 
value of the Taiwan machinery industry and the sales 
volume of soft drinks. These data sets show strong 
seasonality, and growth trends, as shown in Fig. 1 and 
Fig. 2, respectively. In addition, these data sets have been 
extensively applied in the fuzzy and nonfuzzy, and linear 
and nonlinear seasonal time series literature with a focus 
on the linear fuzzy modelling in incomplete data 
situations. The Taiwan machinery industry data set 
totally has 48 observations, corresponding to the period 
of the January 1994 to December 1997, which is divided 
into two samples of training and testing in order to assess 
the forecasting performance of proposed model.  

 

 

(18) 

1 1 2

1 1 2

1 1 2

1 1 2

1 1 2

t 1 1 2

l q l Q l Np P

t ij t i js ij t i j s i t ,i
i 0 j 0 i l j l i l

t t t ,il q l Q l Np P

ij t i js ij t i j s i t ,i
z t i 0 j 0 i l j l i l

z z a u

1 , z 0, a 0, u 0,

c z c a c u
z

0 Otherwise.
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(21) 

2

1 1 2

2

1 1 2

1 1 2

1 1 2

l Np pk P k P k

ij t i js ij t i j s i t ,i
t 1 i 0 j 0 t 1 i 0 j 0 t 1 i l

l q l Q l Np pP P

ij t i js ij t i j s i t ,i ij t i js
i 0 j 0 i l j l i l t i 0 j 0

Minimize S c z c a c u

z a u 1 h c z ...

subject.to

2

1 1 2

2

1 1 2

1 1 2

1 1 2

k

1

l Npk P k

ij t i j s i t ,i t
t 1 i 0 j 0 t 1 i l

l q l Q l Np pP k P

ij t i js ij t i j s i t ,i ij t i js
i 0 j 0 i l j l i l t 1 i 0 j 0

ij t i

... c a c u z t 1,2,..,k ,

z a u 1 h c z ...

... c a
2

1 1 2

2

l Npk P k

j s i t ,i t
t 1 i 0 j 0 t 1 i l

i 2

c u z t 1,2,..,k ,

c 0 for i 1,2,...,l N .

 
 

The training data set, 36 observations (January 1994 - 
December 1996), is exclusively used in order to 
formulate the model and then the test sample, the last 12 
observations (January 1997 - December 1997), is used in 
order to evaluate the performance of the established 
model. The soft drinks data set totally has 48 
observations, corresponding to the period of the January 
1972 to December 1975, which is also divided into two 
samples of training and testing. The training data set, 36 
observations (January 1972 - December 1974), is used to 
formulate the model and then the test sample, the last 12 
observations (January 1975 - December 1975), is used to 
evaluate the performance of the established model [21]. 
The procedure of the aforementioned seasonal models, as 
example, is illustrated for the Taiwan machinery industry 
data set forecasting. 
3.1. Seasonal Autoregressive Integrated Moving 

Average model (SARIMA) 
Using the Eviews package software, the best-fitted 

model for the production value, is SARIMA (1, 1, 0) (0, 
1, 1)12, as (22). The results are given in Table1. 
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Fig. 1: The production value of the Taiwan 

machinery industry time series. 
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Fig. 2: The monthly sales volume of soft drinks time 

series. 

 
(22) 

1 11 1 12
t 12 t t

t t 1 t 12

z y 1 B 1 B y .

ẑ 0.2588 z 0.73997 a ,
 

3.2. Fuzzy Seasonal Autoregressive Integrated Moving 
Average model (FSARIMA) 

Setting 1 2, 0.2588, 0.73997 , the fuzzy 

parameters are obtained by (10) (with h=0). The results 
after deleting the outlier data are given in Table 1. 
3.3. The Fuzzy Seasonal Multi-Layer perceptron 
(FSMLP) 

By Setting obtained results from the designed a crisp 

MLP model * *
1 2, -0.2588,-0.73997  and 

* * *
3 4 5, , 5.8673,0.34745 ,0.59424 , the fuzzy 

parameters are obtained using (21) (with h=0) as (23). 
The obtained results of FSMLP model after deleting the 
outlier data are given in Table 1. 

(23) t t 1 t 12

t ,1 t ,2 t ,3

z 0.2588,0.0124 z 0.73997,0.0000 a

5.8673,0.0000 u 0.34745,0.04862 u 0.59424,0.05641 u .
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4. Comparison the Performance of Models  
In this section, based on the empirical results of these 
examples, the predictive capabilities of the 
aforementioned seasonal models are compared together. 
The information of forecasted lower and upper bounds of 
each model for the Taiwan machinery industry and Soft 
drinks cases is given in Table 1 and Table 2, respectively. 
The Watada model achieves the lowest and unacceptable 
performance; so its results are not reported the lowest 
performance. The seasonal autoregressive integrated 
moving average (SARIMA) and fuzzy seasonal 
autoregressive integrated moving average (FSARIMA) 
take second and third places, respectively. The fuzzy 
seasonal multi-layer perceptron has the best performance 
among other those models in both data sets. The obtained 
results of the fuzzy seasonal multi-layer perceptron 
(FSMLP) for the Taiwan machinery industry and Soft 
drinks data sets are shown in Fig. 3 and Fig. 4; 
respectively. 

 
Table (1). Forecasted interval width and related 

performance of each model (Taiwan machinery industry). 

Date Actual 

FSMLP FSARIMA SARIMA 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Jan-97 26910 25082 28893 24690 28731 15133 38288 

Feb-97 20489 18901 21626 17930 24943 9558 33316 
Mar-97 27489 23868 28329 26453 28800 15284 39969 
Apr-97 27669 25585 29796 25672 29959 15072 405586 
May-97 29737 26103 30576 27160 28705 14789 41076 
Jun-97 29053 27302 31871 27110 30233 15143 42200 
Jul-97 29279 26784 31293 26166 33232 15795 43603 
Aug-97 29020 26580 31230 27622 31270 15177 43715 
Sep-97 28251 25567 29992 26336 31155 14120 43371 

Oct-97 30288 27657 32259 27338 31949 14671 44617 
Nov-97 30188 28909 34143 30128 31981 15742 46368 
Dec-97 35099 33087 39115 25194 37570 15736 470275 

Table (2)*. Forecasted interval width and related 
performance of each model (Soft drinks). 

Date  Actual 

FSMLP  SARIMA  FSARIMA  

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Jan-75 52 47.69 65.57 39.12 55.68 35.09 91.62 

Feb-75 60 51.30 69.76 49.32 60.54 39.54 106.38 
Mar-

75 66 58.54 80.50 55.502 71.99 42.6 126.94 
Apr-75 80 68.28 94.58 69.002 83.26 50.74 157.46 
May-

75 85 76.96 108.22 69.59 100.55 51.62 172.64 
Jun-75 95 78.77 111.25 76.19 95.73 57.6 201.46 
Jul-75 100 85.25 121.61 74.39 107.78 58.69 218.15 
Aug-

75 104 86.00 123.58 81.74 113.94 61.86 240.64 
Sep-75 101 81.54 117.30 61.84 117.78 58.99 242.01 

Oct-75 94 76.90 110.91 58.56 116.666 54.86 235.31 
Nov-
75 81 61.52 86.38 32.38 108.636 45.68 205.55 

Dec-75 70 58.66 83.64 42.68 99.36 38.1 179 

*Note: The upper and lower bound values are rounded. 
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Fig. 3: Results obtained from the FSMLP model  
(Production Value case). 
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Fig. 4: Results obtained from the FSMLP model  

(sales volume case). 
 
5. Conclusions  
Improving forecasting especially time series forecasting 
accuracy is an important yet often difficult task facing 
many decision makers in a wide range of areas. Accurate 
forecasting of seasonal and trend time series is very 
important for effective decisions in many areas. Thus, 
how to model and forecast seasonal and trend time series 
has long been a major research topic that has significant 
practical implications. However, predicting seasonal 
movements has always been a problematic task for 
academic researchers and despite the paramount 
modelling effort registered in the last three decades, it is 
widely recognized that seasonal time series are extremely 
difficult to forecast. 
Many empirical studies including several large-scale 
forecasting competitions with a large number of 
commonly used time series forecasting models also 
conclude that combining forecasts obtained from more 
than one model often leads to improved performance. 
That is the reason why research on improving the 
effectiveness of seasonal time series models has been 
never witnessed a halt. In this paper the performance of 
four different seasonal interval time series models 
(Seasonal Autoregressive Integrated Moving Average 
(SARIMA), Fuzzy Seasonal Autoregressive Integrated 
Moving Average (FSARIMA), Watada fuzzy time series, 
and Hybrid Seasonal Multi-Layer Perceptrons and Fuzzy 
logic (FSMLP) are compared together in the Taiwan 
machinery industry and Soft drinks data sets forecasting. 
Empirical results indicate that among all models FSMLP, 
FSARIMA, SARIMA, Watada model has the best to the 
worst performance, respectively. 
In addition, the obtained interval of the FSMLP is 
narrower than other those used models. However; all of 
the four models have the capacity to handle growth trends 
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and seasonal cycles, with the unit cost of forecasting 
being relatively low. These evidences indicate that the 
FSMLP model can be an effective way to improve 
forecasting accuracy; therefore, it can be used as an 
appropriate alternative tool for seasonal time series 
forecasting, especially in incomplete data situations.  
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