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Abstract — Latest work shows that abstraction 

loses amount of information for high spatial data. 

There are several anonymization techniques like 

Abstraction, Containerization for privacy 

preserving small data publishing. Bucketization 

does not avoid enrollment acknowledgment and 

does not give clear separation between aspects. 

We are presenting a technique called slicing for 

multiple columns multiple attributes which 

partitions the data both horizontally and 

vertically. We also show that slicing conserves 

better data service than generalization and 

Bucketization and can be used for enrollment 

acknowledgment conservation. Slicing can be 

used for aspect acknowledgment conservation 

and establishing an efficient algorithm for 

computing the sliced data that obey the l-diversity 

requirement Our workload confirm that this 

technique is used to prevent membership 

disclosure and it also used to increase the data 

utility and privacy of a sliced dataset by allowing 

multiple columns multiple attributes slicing while 

maintaining the prevention. 
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I. INTRODUCTION 

Micro data has been studied extensively in recent 

years for privacy preserving. Records of micro data, 

each of which contains information about an 

individual entity, such as a person, a household, or 

an organization there are many micro data 

anonymization techniques have been proposed. The 

most popular ones are generalization [9], [11] for k-

anonymity [11] and Bucketization [12], [7], [3] for 

‘l-diversity [6]. In both approaches, attributes are 

partitioned into three categories:  

1. Some attributes are identifiers that can uniquely 

identify an individual, such as Name or Social 

Security Number;  

2. Some attributes are Quasi Identifiers (QI), which 

the adversary may already know (possibly from 

other publicly available databases) and which, 

when taken together, can potentially identify an 

individual, e.g., Birthdate, Sex, and Zip code;  

3. Some attributes are Sensitive Attributes (SAs), 

which are unknown to the adversary and are 

considered sensitive, such as Disease and Salary. 

 In both generalization and Bucketization, first we 

remove identifiers from the data and then partitions 

tuples into buckets. The two techniques differ in the 

next step. Generalization transforms the QI-values in 

each bucket into “less specific but semantically 

consistent” values so that tuples in the same bucket 

cannot be distinguished by their QI values. In 

Bucketization, one separates the SAs from the QIs 

by randomly permuting the SA values in each 

bucket. The anonymized data consist of a set of 

buckets with permuted sensitive attribute values. 

II. LITERATURE REVIEW 

In [9], [11], [10], generalization has been proposed. 

Generalization replaces a value with a “less-specific 
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but semantically consistent” value. Three types of 

encoding schemes have been proposed for 

generalization: global recoding, regional recoding, 

and local recoding. In Global recoding [4] the 

property that multiple occurrences of the same value 

are always replaced by the same generalized value.  

In Regional record [5] also called multidimensional 

recoding (the Mondrian algorithm) which partitions 

the domain space into non-intersect regions and data 

points in the same region are represented by the 

region they are in. Local recoding [13] does not have 

the above constraints and allows different 

occurrences of the same value to be generalized 

differently. The main problems with generalization 

are:  

1. It fails on high-dimensional data due to the 

curse of dimensionality [1]  

2. It causes too much information loss due to the 

uniform-distribution assumption [12]. 

In [12], [7], [3], Bucketization has been proposed. In 

Bucketization first partitions tuples in the table into 

buckets and then separates the quasi identifiers with 

the sensitive attribute by randomly permuting the 

sensitive attribute values in each bucket. The 

anonymized data consist of a set of buckets with 

permuted sensitive attribute values. In particular, 

Bucketization has been used for anonym zing high-

dimensional data [2]. However, their approach 

assumes a clear separation between QIs and SAs. In 

addition, because the exact values of all QIs are 

released, membership information is disclosed. 

III. EXISTING SYSTEM PROBLEM 

Generalization for k-anonymity suffers from 

following three reasons because of which it losses 

considerable amount of information, especially for 

high-dimensional data. First, generalization for k-

anonymity suffers from the curse of dimensionality. 

In order for generalization to be effective, records in 

the same bucket must be close to each other so that 

generalizing the records would not lose too much 

information. However, in high dimensional data, 

most data points have similar distances with each 

other, forcing a great amount of generalization to 

satisfy k-anonymity even for relatively small ks. 

Second, in order to perform data analysis or data 

mining tasks on the generalized table, the data 

analyst has to make the uniform distribution 

assumption that every value in a generalized 

interval/set is equally possible, as no other 

distribution assumption can be justified. This 

significantly reduces the data utility of the 

generalized data. Third, because each attribute is 

generalized separately, correlations between 

different attributes are lost. In order to study attribute 

correlations on the generalized table, the data analyst 

has to assume that every possible combination of 

attribute values is equally possible. This is an 

inherent problem of generalization that prevents 

effective analysis of attribute correlations. 

Bucketization has better data utility than 

generalization, but has some limitations as follows:  

 

      First, Bucketization does not prevent 

membership disclosure [8]. Because Bucketization 

publishes the QI values in their original forms, an 

adversary can find out whether an individual has a 

record in the published data or not. As shown in 

[11], 87 percent of the individuals in the United 

States can be uniquely identified using only three 

attributes (Birthdate, Sex, and Zip code). A micro 

data (e.g., census data) usually contains many other 

attributes besides those three attributes. This means 



International Journal of Current Trends in Engineering & Technology  
Volume: 02, Issue: 01 (JAN-FAB, 2016) 

  

   46 

 

that the membership information of most individuals 

can be inferred from the packetized table. 

Second, Bucketization requires a clear 

separation between QIs and SAs. However, in many 

data sets, it is unclear which attributes are QIs and 

which are SAs. Third, by separating the sensitive 

attribute from the QI attributes, Bucketization breaks 

the attribute correlations between the QIs and the 

SAs. 

IV. SOLUTION FOR THE EXISTING 

SYSTEM PROBLEM 

We introduce a novel data anonymization technique 

called slicing to improve the current state of the art. 

Slicing partitions the data set both vertically and 

horizontally. Vertical partitioning is done by 

grouping attributes into columns based on the 

correlations among the attributes. Each column 

contains a subset of attributes that are highly 

correlated. Horizontal partitioning is done by 

grouping tuples into buckets. Finally, within each 

bucket, values in each column are randomly 

permutated (or sorted) to break the linking between 

different columns.  

The basic idea of slicing is to break the 

association cross columns, but to preserve the 

association within each column. This reduces the 

dimensionality of the data and preserves better utility 

than generalization and Bucketization. Slicing 

preserves utility because it groups highly correlated 

attributes together, and preserves the correlations 

between such attributes. Slicing protects privacy 

because it breaks the associations between 

uncorrelated attributes, which are infrequent and thus 

identifying. Note that when the data set contains QIs 

and one SA, Bucketization has to break their 

correlation; slicing, on the other hand, can group 

some QI attributes with the SA, preserving attribute 

correlations with the sensitive attribute. 

The key intuition that slicing provides privacy 

protection is that the slicing process ensures that for 

any tuple, there are generally multiple matching 

buckets. 

V. PROPOSED SYSTEM 

We first give an example to illustrate slicing. We 

then formalize slicing, compare it with 

generalization and Bucketization, and discuss 

privacy threats that slicing can address. 

Table 1 An Micro data Table and its Anonymized 

versions using various Anonyms zing Technique. 

 

Table 1 shows an example micro data table and its 

anonymized versions using various anonymization 

techniques. The original table is shown in Table 1a. 

The three QI attributes are {Age: Sex; Zip code}, 

and the sensitive attribute SA is Disease. A 

generalized table that satisfies 4- anonymity is 

shown in Table 1b, a packetized table that satisfies 

2-diversity is shown in Table 1c, a generalized table 

where each attribute value is replaced with the 

multistep of values in the bucket is shown in Table 

1d, and two sliced tables are shown in Tables 1e and 

1f. Slicing first partitions attributes into columns. 

Each column contains a subset of attributes. This 

vertically partitions the table. For example, the sliced 

table in Table 1f contains two columns: the first 
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column contains {Age; Sex} and the second column 

contains {Zip code; Disease}. The sliced table 

shown in Table 1e contains four columns, where 

each column contains exactly one attribute slicing 

also partition tuples into buckets. Each bucket 

contains a subset of tuples. This horizontally 

partitions the table. For example, both sliced tables 

in Tables 1e and 1f contain two buckets, each 

containing four tuples. Within each bucket, values in 

each column are randomly permutated to break the 

linking between different columns. 

5.1 Formalization of Slicing 

Let T be the micro data table to be published. T 

contains d attributes: A = {A1; A2…Ad} and their 

attribute domains are {D [A1]; D [A2]; . . .; D [Ad]}. 

A tuple t ϵ T can be represented as t = (t [A1]; t [A2]; 

. . . ; t [Ad]) where t [Ai] (1 ≤ i ≤ d) is the Ai value of 

t. 

5.2 Attribute Partition and Columns 

An attribute partition consists of several subsets of 

A, such that each attribute belongs to exactly one 

subset. Each subset of attributes is called a column. 

5.3 Tuple Partition and Buckets 

A tuple partition consists of several subsets of T, 

such that each tuple belongs to exactly one subset. 

Each subset of tuples is called a bucket. 

5.4 Slicing 

Given a micro data table T, a slicing of T is given by 

an attribute partition and a tuple partition. 

For example, Tables 1e and 1f are two sliced tables. 

In Table 1e, the attribute partition is {{Age}, {Sex}, 

{Zip code}, {Disease}} and the tuple partition is 

{{t1; t2; t3; t4}, {t5; t6; t7; t8}}. In Table 1f, the 

attribute partition is {{Age, Sex}, {Zip code, 

Disease}} and the tuple partition is {{t1; t2; t3; t4}, 

{t5; t6; t7; t8}}. 

 

5.6 Column Generalization 

Column generalization ensures that one column 

satisfies the k-anonymity requirement. It is a 

multidimensional encoding [5] and can be used as an 

additional step in slicing. Specifically, a general 

slicing algorithm consists of the following three 

phases: attribute partition, column generalization, 

and tuple partition. Because each column contains 

much fewer attributes than the whole table, attribute 

partition enables slicing to handle high-dimensional 

data. 

5.7 Matching Buckets 

For example, consider the sliced table shown in 

Table 1f, and consider t1 = (22; M; 47906; 

dyspepsia). Then, the set of matching buckets for t1 

is {B1}. 

5.8 Comparison with Generalization 

We now show that slicing preserves more 

information than such a local recoding approach, 

assuming that the same tuple partition is used. We 

achieve this by showing that slicing is better than the 

following enhancement of the local recoding 

approach. Rather than using a generalized value to 

replace more specific attribute values, one uses the 

multiset of exact values in each bucket. For example, 

Table 1b is a generalized table, and Table 1d is the 

result of using multisets of exact values rather than 

generalized values. For the Age attribute of the first 

bucket, we use the multiset of exact values {22, 22, 

33, 52} rather than the generalized interval [22-52]. 

The multiset of exact values provides more 

information about the distribution of values in each 

attribute than the generalized interval. Therefore, 
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using multisets of exact values preserves more 

information than generalization. However, we 

observe that this multiset-based generalization is 

equivalent to a trivial slicing scheme where each 

column contains exactly one attribute, because both 

approaches preserve the exact values in each 

attribute but break the association between them 

within one bucket. For example, Table 1e is 

equivalent to Table 1d. Now comparing Table 1e 

with the sliced table shown in Table 1f, we observe 

that while one-attribute-per-column slicing preserves 

attribute distributional information, it does not 

preserve attribute correlation, because each attribute 

is in its own column. In slicing, one groups 

correlated attributes together in one column and 

preserves their correlation. For example, in the sliced 

table shown in Table 1f, correlations between Age 

and Sex and correlations between Zip code and 

Disease are preserved. In fact, the sliced table 

encodes the same amount of information as the 

original data with regard to correlations between 

attributes in the same column. 

5.9 Comparison with Bucketization 

To compare slicing with Bucketization, we first note 

that Bucketization can be viewed as a special case of 

slicing, where there are exactly two columns: one 

column contains only the SA, and the other contains 

all the QIs. The advantages of slicing over 

Bucketization can be understood as follows: 

 First, by partitioning attributes into more than two 

columns, slicing can be used to prevent membership 

disclosure. Our empirical evaluation on a real data 

set shows that Bucketization does not prevent 

membership disclosure. 

Second, unlike Bucketization, which requires a clear 

separation of QI attributes and the sensitive attribute, 

slicing can be used without such a separation. For 

data set such as the census data, one often cannot 

clearly separate QIs from SAs because there is no 

single external public database that one can use to 

determine which attributes the adversary already 

knows. Slicing can be useful for such data. 

Finally, by allowing a column to contain both some 

QI attributes and the sensitive attribute, attribute 

correlations between the sensitive attribute and the 

QI attributes are preserved. For example, in Table 1f, 

Zip code and Disease form one column, enabling 

inferences about their correlations. Attribute 

correlations are important utility in data publishing. 

For workloads that consider attributes in isolation, 

one can simply publish two tables, one containing all 

QI attributes and one containing the sensitive 

attribute 

5.10 Privacy Threats 

For slicing, we consider protection against 

membership disclosure and attribute disclosure. It is 

a little unclear how identity disclosure should be 

defined for sliced data (or for data anonymized by 

Bucketization), since each tuple resides within a 

bucket and within the bucket the association across 

different columns are hidden. In any case, because 

identity disclosure leads to attribute disclosure, 

protection against attribute disclosure is also 

sufficient protection against identity disclosure. 

We would like to point out a nice property of slicing 

that is important for privacy protection. In slicing, a 

tuple can potentially match multiple buckets, i.e., 

each tuple can have more than one matching buckets. 

This is different from previous work on 

generalization (global recoding specifically) and 

Bucketization, where each tuple can belong to a 

unique equivalence-class (or bucket). 
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V. CONCLUSION 

Here we conduct a serve on slicing by using a 

method of data publishing while maintaining the 

privacy. Slicing overcomes the limitations of 

generalization and Bucketization and preserves 

better utility while protecting against privacy threats. 

We illustrate how to use slicing to prevent attribute 

disclosure and membership disclosure. Our 

experiments show that slicing preserves better data 

utility than generalization and is more effective than 

Bucketization in workloads involving the sensitive 

attribute. The general methodology proposed by this 

work is that: before anonymizing the data, one can 

analyze the data characteristics and use these 

characteristics in data anonymization. 
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