
International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 44

A Serve on Slicing: Method of Data Publishing While Maintaining Privacy

Devpal Yadav, Prof. Kailas Patidar, Prof. Manoj Yadav

Sri Satya Sai Institute of Science and Technology,

Sehore, Madhya Pradesh, India

Abstract — Latest work shows that abstraction

loses amount of information for high spatial data.

There are several anonymization techniques like

Abstraction, Containerization for privacy

preserving small data publishing. Bucketization

does not avoid enrollment acknowledgment and

does not give clear separation between aspects.

We are presenting a technique called slicing for

multiple columns multiple attributes which

partitions the data both horizontally and

vertically. We also show that slicing conserves

better data service than generalization and

Bucketization and can be used for enrollment

acknowledgment conservation. Slicing can be

used for aspect acknowledgment conservation

and establishing an efficient algorithm for

computing the sliced data that obey the l-diversity

requirement Our workload confirm that this

technique is used to prevent membership

disclosure and it also used to increase the data

utility and privacy of a sliced dataset by allowing

multiple columns multiple attributes slicing while

maintaining the prevention.

Keyword: - Data security, Data publishing,

Privacy preservation, Data anonymization.

I. INTRODUCTION

Micro data has been studied extensively in recent

years for privacy preserving. Records of micro data,

each of which contains information about an

individual entity, such as a person, a household, or

an organization there are many micro data

anonymization techniques have been proposed. The

most popular ones are generalization [9], [11] for k-

anonymity [11] and Bucketization [12], [7], [3] for

‘l-diversity [6]. In both approaches, attributes are

partitioned into three categories:

1. Some attributes are identifiers that can uniquely

identify an individual, such as Name or Social

Security Number;

2. Some attributes are Quasi Identifiers (QI), which

the adversary may already know (possibly from

other publicly available databases) and which,

when taken together, can potentially identify an

individual, e.g., Birthdate, Sex, and Zip code;

3. Some attributes are Sensitive Attributes (SAs),

which are unknown to the adversary and are

considered sensitive, such as Disease and Salary.

 In both generalization and Bucketization, first we

remove identifiers from the data and then partitions

tuples into buckets. The two techniques differ in the

next step. Generalization transforms the QI-values in

each bucket into “less specific but semantically

consistent” values so that tuples in the same bucket

cannot be distinguished by their QI values. In

Bucketization, one separates the SAs from the QIs

by randomly permuting the SA values in each

bucket. The anonymized data consist of a set of

buckets with permuted sensitive attribute values.

II. LITERATURE REVIEW

In [9], [11], [10], generalization has been proposed.

Generalization replaces a value with a “less-specific

International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 45

but semantically consistent” value. Three types of

encoding schemes have been proposed for

generalization: global recoding, regional recoding,

and local recoding. In Global recoding [4] the

property that multiple occurrences of the same value

are always replaced by the same generalized value.

In Regional record [5] also called multidimensional

recoding (the Mondrian algorithm) which partitions

the domain space into non-intersect regions and data

points in the same region are represented by the

region they are in. Local recoding [13] does not have

the above constraints and allows different

occurrences of the same value to be generalized

differently. The main problems with generalization

are:

1. It fails on high-dimensional data due to the

curse of dimensionality [1]

2. It causes too much information loss due to the

uniform-distribution assumption [12].

In [12], [7], [3], Bucketization has been proposed. In

Bucketization first partitions tuples in the table into

buckets and then separates the quasi identifiers with

the sensitive attribute by randomly permuting the

sensitive attribute values in each bucket. The

anonymized data consist of a set of buckets with

permuted sensitive attribute values. In particular,

Bucketization has been used for anonym zing high-

dimensional data [2]. However, their approach

assumes a clear separation between QIs and SAs. In

addition, because the exact values of all QIs are

released, membership information is disclosed.

III. EXISTING SYSTEM PROBLEM

Generalization for k-anonymity suffers from

following three reasons because of which it losses

considerable amount of information, especially for

high-dimensional data. First, generalization for k-

anonymity suffers from the curse of dimensionality.

In order for generalization to be effective, records in

the same bucket must be close to each other so that

generalizing the records would not lose too much

information. However, in high dimensional data,

most data points have similar distances with each

other, forcing a great amount of generalization to

satisfy k-anonymity even for relatively small ks.

Second, in order to perform data analysis or data

mining tasks on the generalized table, the data

analyst has to make the uniform distribution

assumption that every value in a generalized

interval/set is equally possible, as no other

distribution assumption can be justified. This

significantly reduces the data utility of the

generalized data. Third, because each attribute is

generalized separately, correlations between

different attributes are lost. In order to study attribute

correlations on the generalized table, the data analyst

has to assume that every possible combination of

attribute values is equally possible. This is an

inherent problem of generalization that prevents

effective analysis of attribute correlations.

Bucketization has better data utility than

generalization, but has some limitations as follows:

 First, Bucketization does not prevent

membership disclosure [8]. Because Bucketization

publishes the QI values in their original forms, an

adversary can find out whether an individual has a

record in the published data or not. As shown in

[11], 87 percent of the individuals in the United

States can be uniquely identified using only three

attributes (Birthdate, Sex, and Zip code). A micro

data (e.g., census data) usually contains many other

attributes besides those three attributes. This means

International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 46

that the membership information of most individuals

can be inferred from the packetized table.

Second, Bucketization requires a clear

separation between QIs and SAs. However, in many

data sets, it is unclear which attributes are QIs and

which are SAs. Third, by separating the sensitive

attribute from the QI attributes, Bucketization breaks

the attribute correlations between the QIs and the

SAs.

IV. SOLUTION FOR THE EXISTING

SYSTEM PROBLEM

We introduce a novel data anonymization technique

called slicing to improve the current state of the art.

Slicing partitions the data set both vertically and

horizontally. Vertical partitioning is done by

grouping attributes into columns based on the

correlations among the attributes. Each column

contains a subset of attributes that are highly

correlated. Horizontal partitioning is done by

grouping tuples into buckets. Finally, within each

bucket, values in each column are randomly

permutated (or sorted) to break the linking between

different columns.

The basic idea of slicing is to break the

association cross columns, but to preserve the

association within each column. This reduces the

dimensionality of the data and preserves better utility

than generalization and Bucketization. Slicing

preserves utility because it groups highly correlated

attributes together, and preserves the correlations

between such attributes. Slicing protects privacy

because it breaks the associations between

uncorrelated attributes, which are infrequent and thus

identifying. Note that when the data set contains QIs

and one SA, Bucketization has to break their

correlation; slicing, on the other hand, can group

some QI attributes with the SA, preserving attribute

correlations with the sensitive attribute.

The key intuition that slicing provides privacy

protection is that the slicing process ensures that for

any tuple, there are generally multiple matching

buckets.

V. PROPOSED SYSTEM

We first give an example to illustrate slicing. We

then formalize slicing, compare it with

generalization and Bucketization, and discuss

privacy threats that slicing can address.

Table 1 An Micro data Table and its Anonymized

versions using various Anonyms zing Technique.

Table 1 shows an example micro data table and its

anonymized versions using various anonymization

techniques. The original table is shown in Table 1a.

The three QI attributes are {Age: Sex; Zip code},

and the sensitive attribute SA is Disease. A

generalized table that satisfies 4- anonymity is

shown in Table 1b, a packetized table that satisfies

2-diversity is shown in Table 1c, a generalized table

where each attribute value is replaced with the

multistep of values in the bucket is shown in Table

1d, and two sliced tables are shown in Tables 1e and

1f. Slicing first partitions attributes into columns.

Each column contains a subset of attributes. This

vertically partitions the table. For example, the sliced

table in Table 1f contains two columns: the first

International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 47

column contains {Age; Sex} and the second column

contains {Zip code; Disease}. The sliced table

shown in Table 1e contains four columns, where

each column contains exactly one attribute slicing

also partition tuples into buckets. Each bucket

contains a subset of tuples. This horizontally

partitions the table. For example, both sliced tables

in Tables 1e and 1f contain two buckets, each

containing four tuples. Within each bucket, values in

each column are randomly permutated to break the

linking between different columns.

5.1 Formalization of Slicing

Let T be the micro data table to be published. T

contains d attributes: A = {A1; A2…Ad} and their

attribute domains are {D [A1]; D [A2]; . . .; D [Ad]}.

A tuple t ϵ T can be represented as t = (t [A1]; t [A2];

. . . ; t [Ad]) where t [Ai] (1 ≤ i ≤ d) is the Ai value of

t.

5.2 Attribute Partition and Columns

An attribute partition consists of several subsets of

A, such that each attribute belongs to exactly one

subset. Each subset of attributes is called a column.

5.3 Tuple Partition and Buckets

A tuple partition consists of several subsets of T,

such that each tuple belongs to exactly one subset.

Each subset of tuples is called a bucket.

5.4 Slicing

Given a micro data table T, a slicing of T is given by

an attribute partition and a tuple partition.

For example, Tables 1e and 1f are two sliced tables.

In Table 1e, the attribute partition is {{Age}, {Sex},

{Zip code}, {Disease}} and the tuple partition is

{{t1; t2; t3; t4}, {t5; t6; t7; t8}}. In Table 1f, the

attribute partition is {{Age, Sex}, {Zip code,

Disease}} and the tuple partition is {{t1; t2; t3; t4},

{t5; t6; t7; t8}}.

5.6 Column Generalization

Column generalization ensures that one column

satisfies the k-anonymity requirement. It is a

multidimensional encoding [5] and can be used as an

additional step in slicing. Specifically, a general

slicing algorithm consists of the following three

phases: attribute partition, column generalization,

and tuple partition. Because each column contains

much fewer attributes than the whole table, attribute

partition enables slicing to handle high-dimensional

data.

5.7 Matching Buckets

For example, consider the sliced table shown in

Table 1f, and consider t1 = (22; M; 47906;

dyspepsia). Then, the set of matching buckets for t1

is {B1}.

5.8 Comparison with Generalization

We now show that slicing preserves more

information than such a local recoding approach,

assuming that the same tuple partition is used. We

achieve this by showing that slicing is better than the

following enhancement of the local recoding

approach. Rather than using a generalized value to

replace more specific attribute values, one uses the

multiset of exact values in each bucket. For example,

Table 1b is a generalized table, and Table 1d is the

result of using multisets of exact values rather than

generalized values. For the Age attribute of the first

bucket, we use the multiset of exact values {22, 22,

33, 52} rather than the generalized interval [22-52].

The multiset of exact values provides more

information about the distribution of values in each

attribute than the generalized interval. Therefore,

International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 48

using multisets of exact values preserves more

information than generalization. However, we

observe that this multiset-based generalization is

equivalent to a trivial slicing scheme where each

column contains exactly one attribute, because both

approaches preserve the exact values in each

attribute but break the association between them

within one bucket. For example, Table 1e is

equivalent to Table 1d. Now comparing Table 1e

with the sliced table shown in Table 1f, we observe

that while one-attribute-per-column slicing preserves

attribute distributional information, it does not

preserve attribute correlation, because each attribute

is in its own column. In slicing, one groups

correlated attributes together in one column and

preserves their correlation. For example, in the sliced

table shown in Table 1f, correlations between Age

and Sex and correlations between Zip code and

Disease are preserved. In fact, the sliced table

encodes the same amount of information as the

original data with regard to correlations between

attributes in the same column.

5.9 Comparison with Bucketization

To compare slicing with Bucketization, we first note

that Bucketization can be viewed as a special case of

slicing, where there are exactly two columns: one

column contains only the SA, and the other contains

all the QIs. The advantages of slicing over

Bucketization can be understood as follows:

 First, by partitioning attributes into more than two

columns, slicing can be used to prevent membership

disclosure. Our empirical evaluation on a real data

set shows that Bucketization does not prevent

membership disclosure.

Second, unlike Bucketization, which requires a clear

separation of QI attributes and the sensitive attribute,

slicing can be used without such a separation. For

data set such as the census data, one often cannot

clearly separate QIs from SAs because there is no

single external public database that one can use to

determine which attributes the adversary already

knows. Slicing can be useful for such data.

Finally, by allowing a column to contain both some

QI attributes and the sensitive attribute, attribute

correlations between the sensitive attribute and the

QI attributes are preserved. For example, in Table 1f,

Zip code and Disease form one column, enabling

inferences about their correlations. Attribute

correlations are important utility in data publishing.

For workloads that consider attributes in isolation,

one can simply publish two tables, one containing all

QI attributes and one containing the sensitive

attribute

5.10 Privacy Threats

For slicing, we consider protection against

membership disclosure and attribute disclosure. It is

a little unclear how identity disclosure should be

defined for sliced data (or for data anonymized by

Bucketization), since each tuple resides within a

bucket and within the bucket the association across

different columns are hidden. In any case, because

identity disclosure leads to attribute disclosure,

protection against attribute disclosure is also

sufficient protection against identity disclosure.

We would like to point out a nice property of slicing

that is important for privacy protection. In slicing, a

tuple can potentially match multiple buckets, i.e.,

each tuple can have more than one matching buckets.

This is different from previous work on

generalization (global recoding specifically) and

Bucketization, where each tuple can belong to a

unique equivalence-class (or bucket).

International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 49

V. CONCLUSION

Here we conduct a serve on slicing by using a

method of data publishing while maintaining the

privacy. Slicing overcomes the limitations of

generalization and Bucketization and preserves

better utility while protecting against privacy threats.

We illustrate how to use slicing to prevent attribute

disclosure and membership disclosure. Our

experiments show that slicing preserves better data

utility than generalization and is more effective than

Bucketization in workloads involving the sensitive

attribute. The general methodology proposed by this

work is that: before anonymizing the data, one can

analyze the data characteristics and use these

characteristics in data anonymization.

ACKNOWLEDGMENT

We would like to take this opportunity to express our

profound gratitude and deep regard to my Guide

Prof. Kailas Patidar, for his exemplary guidance,

valuable feedback and constant encouragement

throughout the duration of the project. I would like

to thanks our principal and the entire staff member

who directly and indirectly guide me. Never the less

I also like to thanks my parents and friends to help

me during the completion of this task.

REFERENCE

[1] C. Aggarwal, “On k-Anonymity and the Curse

of Dimensionality,” Proc. Int’l Conf. Very

Large Data Bases (VLDB), pp. 901-909, 2005.

[2] G. Ghinita, Y. Tao, and P. Kalnis, “On the

Anonymization of Sparse High-Dimensional

Data,” Proc. IEEE 24th International

Conference Data Engineering (ICDE), pp. 715-

724, 2008.

[3] N. Koudas, D. Srivastava, T. Yu, and Q.

Zhang, “Aggregate Query Answering on

Anonymized Tables,” Proceedings IEEE 23rd

International Conference Data Engineering.

(ICDE), pp. 116-125, 2007.

[4] K. LeFevre, D. DeWitt, and R. Ramakrishnan,

“Incognito: Efficient Full-Domain k-

Anonymity,” Proceedings ACM SIGMOD

International Conference Management of Data

(SIGMOD), pp. 49-60, 2005.

[5] K. LeFevre, D. DeWitt, and R. Ramakrishnan,

“Mondrian Multidimensional k-Anonymity,”

Proceedings International Conference Data

Engineering (ICDE), p. 25, 2006.

[6] A. Machanavajjhala, J. Gehrke, D. Kifer, and

M. Venkitasubramaniam, “‘-Diversity: Privacy

Beyond k-Anonymity,” Proceedings

International Conference Data Engineering

(ICDE), p. 24, 2006.

[7] D.J. Martin, D. Kifer, A. Machanavajjhala, J.

Gehrke, and J.Y. Halpern, “Worst-Case

Background Knowledge for Privacy-

Preserving Data Publishing,” Proceedings

IEEE 23rd International Conference Data

Engineering (ICDE), pp. 126-135, 2007.

[8] M.E. Nergiz, M. Atzori, and C. Clifton,

“Hiding the Presence of Individuals from

Shared Databases,” Proceedings ACM

SIGMOD International Conference

Management of Data (SIGMOD), pp. 665-676,

2007.

[9] P. Samarati, “Protecting Respondent’s Privacy

in Micro data Release,” IEEE Transaction

Knowledge and Data Engineering, vol. 13, no.

6, pp. 1010-1027, Nov./Dec. 2001.

[10] L. Sweeney, “Achieving k-Anonymity Privacy

Protection Using Generalization and

Suppression,” international journal Uncertainty

International Journal of Current Trends in Engineering & Technology
Volume: 02, Issue: 01 (JAN-FAB, 2016)

 50

Fuzziness and Knowledge-Based Systems, vol.

10, no. 6, pp. 571-588, 2002.

[11] L. Sweeney, “k-Anonymity: A Model for

Protecting Privacy,” international journal

Uncertainty Fuzziness and Knowledge-Based

Systems, vol. 10, no. 5, pp. 557-570, 2002.

[12] X. Xiao and Y. Tao, “Anatomy: Simple and

Effective Privacy Preservation,” Proceedings

international conference Very Large Data

Bases (VLDB), pp. 139-150, 2006.

[13] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and

A.W.-C. Fu, “Utility-Based Anonymization

Using Local recoding,” Proceedings 12th

ACMSIGKDD international conference

Knowledge Discovery and Data Mining

(KDD), pp. 785-790, 2006.

AUTHOR’S PROFILE

