
International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

151

A Fast Name Lookup Method in NDN Based on Hash Coding

 Mr. Shuaibo Feng, Assoc. Prof. Mingchuan Zhang, Assoc. Prof. Ruijuan Zheng

School of Engineering and Information Technology

Information Engineering College, Henan University of Science and Technology

Luoyang, Henan Province, China

Abstract—In order to improve the storage

efficiency and query rate of the name set in NDN

network, an efficient name query mechanism

based on the element hash encoding is proposed.

Firstly, it compressed name set by constructing the

element hash value tree of the name set through

the incremental hash function. Secondly, the quick

name searching is realized through the transition

array. Finally, the incremental update mechanism

is designed to meet the frequent modify, insert and

delete of NDN name. Through experimental

analysis can know that the name compression

ratio reach to 50% and the query efficiency

increase 10%.

Keywords — longest name prefix matching, named

data network, name component coding, name

lookup.

1. INTRODUCTION

With the increase of information and the expansion of

internet application type, the traditional TCP/IP

network can't meet the needs of the current users on

the network. In recent years, Named data network

(NDN) has become the mainly trend in the future

Internet. Compared to the traditional IP network,

NDN is more concerned about the content, rather than

“where” the information is located [1] and it uses the

naming of hierarchical structure to replace the

traditional IP address [2]. NDN retrieves date based

on the name of message, and the route is matched by

the longest prefix of the name. Compared with the

fixed length IP address, NDN name length does not

have upper limit, and the total number of NDN names

is much larger than the total number of IP addresses

in the network. Therefore, NDN based forwarding

table will consume more space than IP address

forwarding table. In addition, the NDN name is

composed of a number of variable length strings and

separators, which increase the complexity of the name

lookup. So, in the NDN network, how to realize the

efficient storage and quick search of the information

name has been widely concerned. The literature [3],

[4] use bloom filter to filter the name, the names that

have the same number elements are divided into the

same name sets. Compared to the hash table, bloom

filter has advantages of low storage overhead. But the

bloom filter has a very small false alarm rate, which

will affect the correctness of the query results. Bloom

filter can't meet the rapid query for a large number of

data. Yuan et al, proposed a name lookup algorithms

based on hash function, using the name as a keyword

to the query. The algorithm is difficult to deal with

the high speed search of massive data [5]. Literature

[6] proposed a multi-step alignment and transfer array

to represent the character tree and search, using the

GPU parallel processing ability to speed up the

search. Although the speed of the search is

accelerated, it is limited by the size of the actual

memory. When the number of entries that are inserted

and updated is large, the update rate is limited. In

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

152

literature [7], [8], the flat name is used to replace the

IP, but the flat name can’t meet the requirements of

the name aggregation. Literature [9] proposed an

efficient scalable name search algorithm, which

compresses the space of strings by the encoding, and

through the status of the array to achieve a fast

search, updated operations, but it can still improve the

encoding way to further compress the string. 2012

Wang et al proposed a name for the component

coding scheme [10], through the code distribution

mechanism to achieve high efficiency encoding, this

scheme improves speed of the prefix matching, but

still has the space to be improved in component

storage and accelerates the rate of the name lookup.

Literature [11], [12] compression storage space by

encoding the name, and using the state transition

array to quickly find the name list, but its encoding

can be further improved. Literature [13] according to

the description of the prefix information in the

forwarding table to search, and use the hash table to

speed up the name update and query rate, although

accelerated the name query speed, but the false

positive of hash function still affect the correctness of

the query. Literature [14] proposed a full name is

recognized as a encoding, but it need a new protocol

to change encoding table between routers. In this

paper, a mechanism of component hash encoding

(CHE) that based on the vertical degree of the name

tree structure will be proposed. The NDN name is

layered with a split operator. At each level, the hash

sequence is obtained by using the incremental hash

function, and the corresponding state transition array

(STA) is constructed to realize the fast searching and

updating for the information name.

2. ELEMENT HASH CODING

In this paper, encoding all children nodes of one

father’s node by using the n element syntax recursive

incremental hash function H (h, s). Assuming a node

Nj, which child node set is N = (n1, n2, …ni-1, ni), so

a continuous n meta hash sequence can be generated

by a hash function. That is to say, in all child nodes of

Nj, the hash value of the first i node is calculated

based on the hash value of the first i-1node. The hash

value of the first child node is calculated based on the

hash value of the father node. Assuming the hash

value of node Nj is hj, you can get the hash encoding

of all the child nodes in set N. As shown in (1):

The hash value of the root node is h0=H(0,scheme),

scheme represents the format of the NDN name. As

shown in the fig.1, according to above the encoding

way we can construct a hash value tree (name

component hash tree, NCHT) for the following

named collection In Fig.1, the NCHT is composed of

14 elements, representing the 9 data names in Fig.1.

Edges that connect a node to its different child nodes

formed an encoding collection, known as the

original encoding collection. Edge represents the

hash value of the child node. For example, “sina”

and “yahoo” are children of node 2, edge h2.1

represents the hash value of the node “sina”, edge

h2.2 represents the hash value of the node “yahoo”.

Therefore, h2.1=H (h0.2, sina), h2.2=H (h2.1, yahoo)

can be obtained by the incremental hash function.

The encoding hash value of the component is

determined by the component itself and before a

component encoding. Therefore, for many of the

original encoding collection we can use a parallel

manner to carry out the encoding.

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

153

/org/yahoo/game/wow

Name Pointer

/cn/google

/cn/google/maps

/cn/google/news

/cn/soso

/cn/yahoo/uk

/org/sina

/org/sina/play

/org/yahoo/videos

Level-3

0

2

53

1

8

4

9

h0,1

cn org

A

6 7

B C D

E

google soso yohoo sina yahoo

maps news uk play videos game

wow

h1,2

Level-1

Level-2

Level-4

Level-5

h0

h0,2

h1,1 h1,3 h2,1 h2,2

h3,1 h3,2 h5,1 h6,1 h7,1

hD,1

h7,2

Fig.1. Hash Sequences of Elements

For example, in Level-2 contains two components

"cn" and "org", were labeled as node 1 and node 2.

Child nodes are {Google, soso, yahoo} and {sina,

yahoo}, which are encoded as {h1, 1, h1, 2, h1, 3} and

{h2, 1, h2, 2}. So, the {h1,1, h1,2, h1,3} and {h2,1, h2,2} can

be encoded by a parallel manner. We can find that

the same component “yahoo” in two different original

encoding collections was encoded as different hash

values.

3. STATE TRANSITION ARRAY

In this paper, we construct NCHT and achieve the

longest prefix matching by using two state transition

arrays (Base Array, Transition Array). In this paper,

for the first i entries in the array A are recorded as A:i.

3.1. Base Array

The structure of the Base Array is a hexadecimal

array; each entry of Base Array is 4 bytes. The first

two bytes represent the number of the transition array,

which indicates that this element belongs to this

transition array. Bits in the back of the Base Array are

indicating where the information is stored in the

Transition Array. In NCHT, the node number starts

from 0. That is, the root node number is 0.

Accordingly, the element number of the Base Array is

also starting from 0. For example: Base: i (i=0,1,2...

n) represents the state information of the node i in

NCHT. As shown in fig.2, Base:6 is 0X00030007.

So, 0003 represents that the state information of the

sixth node in NCHT are stored in Transition 3. And

the below bits of Base:6 is a 0007, which represents

its information is stored in the seventh entries of the

Transition3, and could be expressed as Transition 3:7.

3.2. Transition Array

Transition Array will be set up in each level of the

NCHT. And each transition array in different level

has a different size. The nodes in each level are stored

by the serial number of the state nodes. One transition

array is consisted by many segments. Each segment

represent one node in the layer. As shown in Fig.2,

the first layer of NCHT has only one nodes (the root

node), so the Transition1 has only one segment. The

length of the segment is not fixed, which is

determined by the number of children in the segment.

Each segment contains two entries, respectively is an

indicator and a status symbol. Each entry takes 8

bytes. The first four bytes in the indicator record the

number of status symbols in this segment (the total

number of child nodes that the node has). The next

four bytes represent the entry pointer. If there is no

state in the FIB, PIT, or CS, the entry value is 0. The

first value of the state symbol indicates the hash value

of the child node. The second value represents the

storage location of the child node in the Base Array.

All status symbols in one segment constitute a state

list for this segment, be recorded as Lists (s is the

number of nodes that are represented by this

segment). For example, Transiton3:1 is an indicator,

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

154

its entry has two numbers. 2 indicates that the node

has 2 child nodes. 1 indicates that the state node is

stored in the first entry of FIB; Transiton1:2 is a status

symbol, h0.1 represents the hash value of the first child

node that belong to the root node. 1 represents the

number of the child node in the Base Array.

3.3. Query Process

In Fig.2, given a query name “/org/sina”, and its

corresponding to the hash encoding is“/h0, 0/h0, 2/h2, 1”.

Query process as follows:

1) The query process starts from Base:0, Base:0 is

the root node of NCHT.

2) Base:0=0X00010001 represent the state

information of the root node is stored in

Transition1:1

3) Transition1:1 is an indicator, the first four bytes

indicates that the root node has two child nodes.

That is, node 0 has two status symbols. The hash

encoding of the “org” is h0,2, which matches the

first four bytes of the two status symbol. Find it

matches Transition1:3. The last four bytes of

Transition1:3 are 2, which correspond to the

second elements in the base array Base:2.

4) Base:2=0X00020005, Iterative process to make

the hash encoding “/h0,0/h0,2/h2,1” is fully

matched. Transition3:7 is an indicator of the node

“sina”. So far, all components of the name has

been matched, no need to turn to the next node to

continue the query. Because the last four byte of

the Transition3:7 is 6, the pointer points to the

sixth entries in the FIB, complete the query.

4. ARRAY GENERATION ALGORITHM

The process of query and insert in the array is shown

in algorithm 1. The “name” expresses that the name

of input, C1, C2…Cj…Ci expresses the name is

divided into i component elements by Decompose

(name). LookupLevelj (Cj) indicate the hash value

query of the element Cj in the J-th layer array. “S”

represents that the state of the current query operation

in the transition array T. “S” has three values, “0”

indicates that the corresponding hash value is not

found in the transition array. “1” indicates that the

corresponding hash value is found in the transition

array, and the hash value belongs to the states list that

are relative to the query node. Due to the limitations

of the hash function, there is a situation that may

occur in the same transition array, which is hash value

of the element Ck in the other state list is the same as

the hash value of the query element Cj. In view of this

situation, when the “S” value is 2, it is shown that the

same hash value is matched in the corresponding

transition array, but the hash value that has been

found does not belong to the current state list.

Input “name” is decomposed by the function

Decompose (name). The function LookupLevelj (Cj) is

used to query the encoding of the elements. The query

results can be obtained by the hash value of the

element hj and the value of the current query state S.

If S=1, then the query state is transferred to the next

element hash value query by Transition (T, S, Hj).

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

155

0001 0002 0002 0003 0003 0003 0003 0003 0004 00040004 00040004 0004 0005

0001 0001 0005 0001 0004 0005 0007 0009 0001 00030002 00070004 0008 0001

Name

/cn/google

/cn/google/maps

/cn/google/news

/cn/soso

/cn/yahoo/uk

/org/sina

/org/sina/play

/org/yahoo/videos

/org/yahoo/game/wow

Hash coding

h0,0,h0,1,h1,1

h0,0,h0,1,h1,1,h3,1

h0,0,h0,1,h1,1,h3,2

h0,0,h0,1,h1,2

h0,0,h0,1,h1,3,h5,1

h0,0,h0,2,h2,1

h0,0,h0,2,h2,1,h6,1

h0,0,h0,2,h2,2,h7,1

h0,0,h0,2,h2,2,h7,2,hD,1

Pointer

L2

0

2

53

1

8

4

9 A

6 7

B C D

E

L1

L3

L4

L5

0

9

2

1 1 2

0 1

4 0 10

1

6

2

0 12 1311

3

0 3 4

2

5 0 6 7

2

0 1 2

Base Array：

L1

L2

L3

L4

L5

0 0 0

2 3 5

0 0 1

7 8 0 14

Entry number： 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Transition1:

Transition2:

Transition3:

Transition4:

Transition5:

h0,0

h0,1 h0,2

h1,1 h1,2 h1,3 h2,1 h2,2

h3,1 h3,2 h5,1 h6,1 h7,1 h7,2

hD,1

h0,1 h0,2

h1,1 h1,2 h1,3 h2,1 h2,2

h3,1 h3,2 h5,1 h6,1 h7,1 h7,2

hD,1

 indicator

 status symbol

Free entry

 segment

〔 Lists 〕

Fig.2.State Transition Array

If S=0 or S=2, indicates that Cj is a new element in

this state list, then the hash value will be inserted into

the corresponding state list through the function

AddH(hj,Cj), and create a new state entry in the state

array T through AddT(T,S,Hj), while the state S value

becomes 1 The construction of NCHT is achieved by

algorithm 2. The delete operation can be realized by

amending the entries of the indicator and status

symbol. For the node information update operation, it

can also be realized by modifying the corresponding

state array directly.

5. EXPERIMENT AND PERFORMANCE

ANALYSIS

In this section, The memory cost and the query time

performance are measured on a PC with an Intel Core

4 Duo CPU of 8GHz and DDR3 SDRAM of 16

GB.CHE mechanism are implemented in C language.

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

156

Data from DOMZ [20], CWR [21], Chinaz [22] and

ALEXA [23] are used as the input data in experiment.

Basic data information is shown in table (1).

5.1. Storage Complexity

For an element hash value tree T, the storage space of

T is determined by the size of the node and the

element edge.

Table (1) Number of domains with different components’ numbe

The total number of nodes can be expressed as node

(T) = edge (T) +1. The space size of the element hash

value tree can be obtained. As in:

In (2), αrepresents the space consumed by each node,

β represents the space consumed by each hash value.

For the original NCHT (element hash value tree is set

up without using the state transition array), each node

has at least one pointer to the hash list, a pointer to

the forwarding table, and a position number. A hash

edge that contains a hash value of a node, a pointer to

the next child node, and a number of hash edge list. A

pointer consumes 4Byte space, a number consumes

4Byte space, a hash value also consumes 4Byte space.

Therefore, α =12, β=12. By the above equation can be

the original NCHT will consume 24 × nodes (NCHT)

- 12 spaces. In this paper, we construct the NCHT by

two state transition arrays. Each node is represented

by an element in Base Array and an indicator in the

transition array, a hash edge occupies a status symbol

in the transition array. One element in the Base Array

consumes 4Byte storage space, one indicator

consumes 8Byte storage space, an indicator consumes

8Byte storage space, a status symbol also consumes

8Byte storage space. Therefore, α =12, β=8. By the

above equation, the total storage overhead of the

nodes tree NCHT is 24 () 8nodes NCHT  . So the

use of state conversion array to build the NCHT than

the original NCHT space is reduced by

   1 20 () 8 24 () 12 16.7%nodes NCHT nodes NCHT      .

Table (2) shows that the compression of effect on the

four domain names.

Table (2) Compression ratio of hash sequence

Total components represent the total number of nodes

in the tree. Hash chain represents the bits of the

element tree after the hash encoding. Tree size

represents the bits of the element tree before the hash

encoding. Compression ratio is 1 - HashChain/

TreeSize. The compression rate in table (2) shows

that the method is relatively stable for each data set,

which is more than 50%. In order to test the

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

157

compression rate of hash encoding on the name set,

every time we get the 100K name set from DOMZ to

carry out the experiment. From fig.3, we can find that

with the increase of the name set, the compression

efficiency of the element hash encoding is also

increased. Fig.4 shows that the rise of the CHE

storage overhead is slower than NCT, and indicates

that the CHE is quite effective in both large and small

sets.

Fig.3.The compression ratio of names in DOMZ

5.2. Query Time Optimization

This paper, through the calculation the average query

time of the name set by CHE to prove the

optimization effect of CHE on name query. First,

input a 200K name set, record query time. Then take

this as the foundation, add 200K name set each time,

record the time respectively. Calculate the average

time of name query at Last. Fig.5 shows the average

time of the different domain sets when the number of

names is not the same. Analysis shows that different

sets of experimental results are different. But, with

the increase of the name collection, the query rate

tends to be stable. In table (3), we compare the query

time between CHE and NCT. Combined with fig.5

we can find that the average search time of CHE is

more stable than that of NCT for any data set.

Fig.4.the memory overhead with the change of the

name’s number in DOMZ

Fig.5.The average query time of different domain sets

with the change of name number

Table (3) query time Comparison within NCT & CHE

It can be found that the average search time of CHE is

2500 ~ 4650 CPU cycles (CPU frequency is 2.8GHz),

which is equal to the time of 904ns ~ 1054ns.

Comparison shows that CHE can be faster for the

longest prefix matching than NCT, the query rate

increased by about 10% compared to NCT.

0 500 1000 1500
10

20

30

40

50

60

number of names（ K）

c
o
m

p
re

s
s
 r

a
ti
o
n
（

%
）

CHE内存压缩率

0 500 1000 1500 2000
0

200

400

600

800

1000

Number of names(K)

m
e
m

o
ry

(M
B

)

NCT

CHE

0 500 1000 1500
0

1000

2000

3000

4000

5000

number of names(K)

a
v
e
ra

g
e
 l
o
o
k
u
p
 t

im
e
(C

P
U

 C
y
c
le

)

CWR		

Chinaz

ALEXA

DOMZ

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

158

6. CONCLUSION

In order to solve the problem of name storage and

name query in NDN network, this paper proposes a

new method based on hash coding. In this method,

the element hash value tree is constructed by using

the incremental hash function to realize the

compression of the information name. The fast query

and update of the information name is realized

through the state transition array. The simulation

results show that the method has good performance.

In order to further improve the efficiency of the name

storage, how to effectively use the free entries in the

Basic Array and the Transition Array will be the

focus of the next step.

REFERENCE

[1] Ekambaram V, SivalingamI K M, “Interest

flooding reduction in Content Centric

Networks”, High Performance Switching and

Routing, 2013 IEEE 14th International

Conference on, pp. 205-210, 2013.

[2] Jacobson V, Smetters D K, “Networking named

content”，Proceedings of the 5th international

conference on Emerging networking experiments

and technologies, pp: 1-12, 2009.

[3] Wang Y, Pan T, MI Z, “Name Filter: Achieving

fast name lookup with low memory cost via

applying two-stage bloom filters”, INFOCOM,

2013 Proceedings IEEE, pp. 95-99, 2013.

[4] Quan W, Xu C, Vasilakos A, “TB2F: Tree-

bitmap and bloom-filter for a scalable and

efficient name lookup in content-centric

networking”, Networking Conference, pp. 1-9,

2014.

[5] Yuan H, Song T, Crowley P, “Scalable NDN

forwarding: Concepts, issues and principles”,

Computer Communications and Networks, 2012

21st International Conference on, pp. 1-9, 2012.

[6] Wang Y, Zu Y, “Wire Speed Name Lookup: A

GPU-based Approach”, NSDI, pp. 199-212,

2013.

[7] Wang Y, He K, Dai H, “Scalable name lookup in

NDN using effective name component

encoding”, Distributed Computing Systems,

2012 IEEE 32nd International Conference on,

pp.688-697,2012.

[8] Singla A, Godfrey P, Fall K, “Scalable routing on

flat names”, Proceedings of the 6th International

Conference, 2010.

[9] Jain S, Chen Y, Zhang Z L, “Viro: A scalable,

robust and namespace independent virtual id

routing for future networks”, INFOCOM, 2011

Proceedings IEEE, pp.2381-2389, 2011.

[8] Wang Y, Dai H, Zhang T, “GPU-accelerated

name lookup with component encoding”,

Computer Networks, vol-57(16), pp.3165-

3177,2013.

[9] Zhou Z, Song T, Jia Y, “high-performance url

lookup engine for url filtering systems”, 2010

IEEE International Conference on, pp.1-5, 2010.

[10] Michel B S, Nikoloudakis K, Reiher P, “URL

forwarding and compression in adaptive web

caching”, Nineteenth Annual Joint Conference of

the IEEE Computer and Communications

Societies. Proceedings, pp. 670-678.

[11] Wang Y, Xu B, Tai D, “Fast name lookup for

Named Data Networking”, Quality of Service

(IWQoS), 2014 IEEE 22nd International

Symposium of, pp.198-207, 2014.

[12] Yu Y, Gu D, “The resource efficient forwarding

in the content centric network”, Springer Berlin

Heidelberg, pp.66-77, 2011.

[13] http://www.chinarank.org.cn.

[14] http://www.alexa.corn.

[15] http://www.dnloz.ore.

[16] http://www.chinaz.cor.

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 02, Issue: 01 (JAN-FEB, 2016)

159

AUTHOR’S PROFILE

(1) Shuaibo Feng – Shuaibo

Feng was born in Henan

Province, PRC in August 1987.

He studied in Henan University

of Science and Technology

from 2013 to now. His majored

research area is The next generation of internet.

(2)Mingchuan Zhang –

Mingchuan Zhang was born in

Henan Province, PRC in May

1977. He studied in Beijing

University of Posts and

Telecommunications (Beijing,

PRC) from Mar 2011 to Mar 2014, majored in

computer application and earned a Doctor of

Engineering Degree in three years’ time. He works as

an Associate Professor in Henan University of

Science and Technology from Mar. 2005 to now. His

research interests include ad hoc network, Internet of

Things, cognitive network and future Internet

technology.

(3)Ruijuan Zheng- Ruijuan

Zheng was born in Henan

Province, PRC in Mar 1980. She

studied in Harbin Engineering

University Technology (Harbin,

PRC) from Mar 2005 to Mar 2008, majored in

computer application and earned a Doctor of

Engineering Degree in three year’s time. She works

as an Associate Professor in Henan University of

Science and Technology from Mar 2008 to now. Her

research interests include bio-inspired networks,

Internet of Things, future Internet and computer

security.

