
International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 03, Issue: 01 (JANUARY– FEBRUARY, 2017)

1

Test-Case Prioritization Using Binary Particle Swarm Optimization Method

Shruti Mishra
Computer Science & Engineering SSSIST, Sehore

Bhopal, India

shruti.mishra.766@gmail.com

Kailash Patidar
Computer Science & Engineering SSSIST, Sehore

Bhopal, India

kailashpatidar123@gmail.com

Abstract- Particle swarm optimization method is based on
artificial intelligence technique. It is an optimization
method that was developed in 1995 by Eberhart and
Kennedy based on the social behaviors of fish schooling or
birds flocking. By increasing the overall rate of fault
detection, a greater number of errors can be found more
rapidly in the code. Particle , fitness function , local best ,
global best , velocity update , position update are the
commonly used elements in particle swarm
optimization.PSO algorithms have been developed to solve
constrained problems, multi-objective optimization
problems, problems with dynamically changing
landscapes, and to find multiple solutions. On the other
hand some of them defined different methods like inertia
weight to improve the performance of PSO.

Keywords- Optimization, Prioritization, artificial

intelligence, Swarm, inertia, constriction.

I. INTRODUCTION
Software testing is critical to software production. With
day by day increase in software system complexity and
competition in business, effective software test methods
and automation tools are strongly needed in the real
world in order to deliver high quality software products
in product schedules to back support engineers.
Software testing is the process of experimenting a
program with well-designed input data (called test-cases)
to capture failures. More explicitly saying software
testing is the process of executing a program with the
intent of locating errors to prevent failures. Testing
identifies faults and by removing faults we can increase
the quality of software. Testing also measures the
software quality in terms of its capability for achieving
accurateness, reliability, usability, maintainability,
reusability, correctness and testability. The objective of
testing varies according to the problem, process and level
of testing. In general we can say that the objectives of
testing are: Executing a program with prime goal of
finding an error. A good test is having a high probability of
finding an as-yet-undiscovered error. To design test case
so that it can find the error in minimum amount of time
and effort.

1.1 Test Case Prioritization
Test case prioritization techniques [12] [13] provide an
ordered sequence of test cases for execution on the basis
of following testing goal or objective that maximization of
fault detection capability and code coverage capability of
test suites [13] Model based testing refers to software
testing where test cases are derived in whole or in part
from a model that describes some (usually functional)
aspects of the system under test (SUT).

Figure 1 Regression Testing

The basic idea of model-based software testing is to
identify and build abstract model(s) to present certain
properties and behaviors of the under-test software
product so that different kinds of model-based testing
activities can be performed efficiently as follows: Efficient
and systematic model-based test planning (test modeling
and analysis). Systematic model-based test design,
generation, execution, and result validation. Effective test
suit updates and reuse using model-based approaches.
Accurate model based test coverage analysis and quality
evaluation.

Figure 2 Activities in Model Based Testing

1.2 Test Case Optimization
We call a test case is good, if it cover more features of test
objective and eliminating redundant test cases. In other
word we can say that testing process relies on the quality of
test cases not in quantity of test cases for better results.
By eliminating of redundant test cases it will save time.
Therefore, automatic generation of test cases has reduces
some work load from the tester and the developer, and it
also saves cost and time. [12]Several tools have been
proposed to automate or optimize software testing tasks,
from test generation to its execution. Regarding automatic
Test Case generation, we can identify tools which generate
test suites from some software artifact (such as code,
functional requirements, and use cases). However, as
these tools generate Test Cases in a systematic way (aim
into provide a good coverage of the testing adequacy
criterion), the generated test suites are usually too large to
be executed with the available resources (tools, time,
people). When analyzing large test suits, we can identify

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 03, Issue: 01 (JANUARY– FEBRUARY, 2017)

2

redundancies in Test Cases. Hence, it is possible to cut
down these suits, in order to fit the available resources,
without severely compromising the coverage of the test
adequacy criterion being observed. The task of reducing a
test suite based on some selection criterion is known as
“Test Case selection”. The test selection criterion depends
on the test adequacy criterion being used. Clearly, Test
Case selection should not be performed at random, in
order to preserve the coverage of the testing criterion. In
the absence of automatic tools, this task is usually
manually performed in an ad-hoc fashion. However,
manual Test Case selection is time-consuming and
susceptible to errors. Different authors try to
automatically solve the Test Case selection problem by
deploying a variety of techniques. Some works focus on
deterministic software engineering solutions. Despite
their good results, these works consider only a single
criterion for test case selection.

II. Literature Survey
[1]Particle Swarm Optimization is a biologically inspired
computational search and optimization method
developed in 1995 by Eberhart and Kennedy based on the

social behaviors of birds flocking or fish schooling. A
number of basic variations have been developed due to
improve speed of convergence and quality of solution
found by the PSO. On the other hand, basic PSO is more
appropriate to process static, simple optimization
problem. Modification PSO is developed for solving the
basic PSO problem. The observation and review 46
related studies in the period between 2002 and 2010
focusing on function of PSO, advantages and
disadvantages of PSO, the basic variant of PSO,
Modification of PSO and applications that have
implemented using PSO. The application can show which
one the modified or variant PSO that haven't been made
and which one the modified or variant PSO that will be
developed. [2]Test case prioritization techniques schedule
test cases in an order that increases their effectiveness in
meeting some specific goal. One performance goal, rate of
fault detection, is a measure of how quickly faults are
detected within the testing process; an improved rate of
fault detection can provide faster feedback on the system
under test, and let software engineers begin locating and
correcting faults earlier than might otherwise be possible.
In previous work, we reported the results of studies that
showed that prioritization techniques can significantly
improve rate of fault detection. Those studies, however,
raised several additional questions:(1) can prioritization
techniques be effective when aimed at specific modified
versions (2) what tradeoffs exist between fine granularity
and coarse granularity prioritization techniques (3) can
the incorporation of measures of fault proneness into
prioritization techniques improve their effectiveness. [3]
Particle Swarm Optimization (PSO) is a relatively recent
heuristic search method whose mechanics are inspired by
the swarming or collaborative behavior of biological
populations. These two evolutionary heuristics are
population-based search methods. In other words, PSO
and the GA move from a set of points (population) to
another set of points in a single iteration with likely
improvement using a combination of deterministic and
probabilistic rules. The GA and its many versions have

been popular in academia and in the industry mainly
because of its ease of implementation, and the ability to
effectively solve highly nonlinear, mixed integer
optimization problems that are typical of complex
engineering systems. The only drawback of the GA is its
expensive computational cost. This paper attempts to
examine the claim that PSO has the same effectiveness
(finding the true global optimal solution) as the GA but
with significantly better computational efficiency (less
function evaluations) by implementing statistical
analysis and formal hypothesis testing. The
performance comparison of the GA and PSO is
implemented using a set of benchmark test problems as
well as two space systems design optimization problems,
namely, telescope array configuration and spacecraft
reliability-based design. [4] The time taken performing the
fitness calculations can dominate the total computational
time when applying to Particle Swarm Optimization (PSO)
to complex real life problems. This paper describes a
method of estimating fitness, and the reliability of that
estimation, that can be used as an alternative for
performing some true fitness calculations. The fitness
estimation is always made but should the reliability of this
fitness estimation drop below a user specified threshold,
the estimate is discarded and a true fitness evaluation
performed. Results are presented for three problems that
show that the number of true fitness evaluations can be
significantly reduced by this method without degrading
the performance of PSO. Further the value used for the
threshold, the only new parameter introduced, is shown
not to be sensitive, at least on these test problems.
Provided that the time to perform a true fitness evaluation
is far longer than the time for the fitness and reliability
calculations, a substantial amount of computing time can
be saved while still achieving the same end result. A given
particle has both a fitness (either evaluated or estimated)
and a reliability that gives an indication of how reliable
that fitness is thought to be. A fitness that is truly
evaluated has a reliability of unity, but with each fitness
estimation the reliability of the estimated fitness reduces.
When estimating the fitness at some point, should the
reliability of this estimate drop below a user specified
threshold the estimate is abandoned and a true fitness
evaluation is made(thus restoring the reliability to unity).
To minimize the number of positions whose fitness and
reliability need to be kept, only the positions occupied by
the particles in the previous iteration are kept. The fitness
of a particle after it has been moved is derived from the
fitness and reliability of this particle before it was moved
and the fitness and reliability values associated with the
position of the particle that was closest to this new
position last iteration. [5] Particle swarm optimization is a
heuristic global optimization method and also an
optimization algorithm, which is based on swarm
intelligence. It comes from the research on the bird and
fish flock movement behavior. The algorithm is widely
used and rapidly developed for its easy implementation
and few particles required to be tuned. The main idea of
the principle of PSO is presented; the advantages and the
shortcomings are summarized. At last this paper presents
some kinds of improved versions of PSO and research
situation, and the future research issues are also given. In
the basic particle swarm optimization algorithm, particle

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 03, Issue: 01 (JANUARY– FEBRUARY, 2017)

3

swarm consists of “n” particles, and the position of each
particle stands for the potential solution in D-dimensional
space. The particles change its condition according to the
following three principles: (1) to keep its inertia (2) to
change the condition according to its most optimist
position (3) to change the condition according to the
swarm’s most optimist position. The position of each
particle in the swarm is affected both by the most optimist
position during its movement (individual experience) and
the position of the most optimist particle in its
surrounding (near experience). When the whole particle
swarm is surrounding the particle, the most optimist
position of the surrounding is equal to the one of the
whole most optimist particle; this algorithm is called the
whole PSO. If the narrow surrounding is used in the
algorithm, this algorithm is called the partial PSO. Each
particle can be shown by its current speed and position,
the most optimist position of each individual and the most
optimist position of the surrounding. In the partial PSO,
the speed and position of each particle change according
the following equality. [6] Genetic Algorithm (GA) is
heuristic search algorithm. They are based on the idea of
natural selection and genetics. This algorithm is inspired
by the Dalton's theory about evolution that is survival
of the fittest. It is a part of evolutionary computing
which is a growing field of Artificial Intelligence. GA
exploits the historical information to direct the search in
region of better performance with in the search space. In
this way competition among individuals for better
resources results in fittest individual dominating over the
weaker ones. Genetic Algorithms are robust hence they
are better than conventional AI (Artificial Intelligence).
GA does not break easily even if there is a slightly change
in the input and it also does not get affected by noise. GA
offer benefit over typical search of optimization problem
in searching large state space, multi modal search space
and n dimensional surface. GA consists of following
operators that is Selection Operator chromosomes are
selected for cross-over based on the value of the
fitness function Cross- Over Operator combine two
chromosomes to produce new chromosomes. Mutation
Operator in this value is randomly changed to create new
genes in the individual. GA starts with randomly generated
population of individuals or chromosomes .Fitness of
individual is calculated based on some fitness function.
After the fitness is calculated selection of individuals is
done based on the Roulette -Wheel Selection method i.e
an individual having higher fitness value has the more
chance of getting selected .Then Cross over operator is
applied to produce new offspring in the population that
may have better characteristics than their parents.
Mutation is done to introduce new individual in the
population is done by flipping the bit of the chromosomes.
Particle Swarm Optimization is a relatively recent
heuristic search method. It is similar to GA in the sense
that both are evolutionary algorithms .It is one of the
meta-heuristics approach that optimizes a problem and
try to improve candidate solution iteratively. PSO is
generally used to solve those problems whose solution
can be represented as a point in an n-dimensional space.
In PSO potential solution is called particle. A number of
particles are randomly set into motion through this space.
Each particle posses its current position, current velocity,

and its pbest position. Pbest is the personal best position
explored so far. It also incorporates Gbest that global best
position achieved by all its individuals. It is a simple
approach and it is effective across a variety of problem
domains. Pseudo code for PSO the PSO algorithm consists
of just few steps, which are repeated until some stopping
condition is met. The steps are as follow: Initialize the
population of individuals with current position and,
velocity. Evaluate the fitness of the individual particle (P
best). Keep track of the individual highest fitness (G best).
Modify velocity based on Pbest and Gbest location. Update
the particle position. PSO starts with initialization of
particle velocity and current position. Here particle is in
2-D space . Fitness value of the particle is calculated
according to function. If the fitness of the particle is better
than its previous value update particle x and y position
that is its personal best position. Also if the value is better
than gbest position update global best position of the
particle. Apply equations to update the x and y velocity
vector of the particles. Process repeats until termination
criteria are met or the optimal solution is found.

III. Proposed Solution
Here the particle swarm optimization concept is used
which consists of updating the velocity of accelerating
each particle toward its pbest and gbest locations at each
time step. Acceleration is weighted by a random term,
with separate random numbers being generated for
acceleration toward pbest and gbest locations.

Figure 3 Gbest and Pbest converge curve

Let f be the objective function to be maximized, then, the
personal best position of a particle at iteration or time
step t is updated as follows:

Where yi (t) is personal best position and xi (t) is swarm

current position. For the gbest model, the global best
position is determined from the entire swarm by
selecting the best personal best position. This position is
denoted by. The equation that manipulates the velocity
is called the velocity update equation and is stated
as follows:

Vik+1

= wvi+ c1rl(pbesti - si) + c2r2 (gbesti- si)

Where vi
k+l

 is the velocity updated for the jth

dimension. C1is the acceleration constants where

moderates the maximum step size towards the personal
best position of the particle. C2 is the acceleration

constants where moderates the maximum step size
towards the global best position in iteration. rl (t), r2 (t)

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 03, Issue: 01 (JANUARY– FEBRUARY, 2017)

4

is two random values in the range [0, 1] which give the
PSO algorithm a stochastic search property. w is Inertia
weight.
Inertia component, W-which serves as a memory of the
previous flight direction for example movement in the
immediate past.
Cognitive component, C1- which quantifies the
performance of particle i relative to past performances,
which means the cognitive component, resembles
individual memory of the position that was best for the
particle.
Social component, c2 quantifies the performance of
particle i relative to a group of particles. The effect of
the social component is that each particle is also drawn
towards the best position found by the particle's
neighborhood. Velocity updates to each dimension
can be clamped with a user defined maximum
velocity, Vmax, which would prevent them from
exploding, thereby causing premature convergence. Each
particle updates its position using the following equation:

Binary Particle Swarm Optimization
In this each particle uses binary values to represent its
current position and the position of the best solution
found. The velocity vector is updated as in the continuous
version, but determining the probability that each bit of
the position vector becomes 1. The velocity vector should
be mapped in such a way that it only contains values
within the [0, 1] range. To this end, the sigmoid function
is applied to each of its values. The equation for sigmoid
function and updating positions is then replaced by the
following probabilistic update equation:

where s (t) is a random value in the range [0, 1]

Step 1: Making CFG: Convert the activity diagram into a
directed graph as Control Flow Graph (CFG). Elements
showing an activity of activity diagram are treated as
nodes in CFG. Flow is also shown through directed graph
between the nodes. If the edge is outward from the node
that means it is calling the other. If the edge is inward to
the node that means it is being called by the other. Node
with no inward edge is initial node and that of with no
outward edge is final node.

Step 2: Assigning Weights: Based on the Information
o f Flow metrics (IF) concept every node is designated
with a weight value. This IF value is defined as: I F (X) = F
AN I N (X) ∗ F AN OU T (X) where, F AN I N (X) is defined as
number of inward edges to node X. F AN OU T (X) is defined
as a number of outward edges to node X.

Step 3: From source to destination there are many paths
possible by traversing the CFG. Complexity of a path may
be calculated by using basic IF model i.e. summing of all
the weights corresponding to every node in a path
selected. The Fitness formula gives fitness value (F) of path
P and it can be calculated on the basis of following formula:

where, Wi is weight of ith node in P th path

Step 4: Identification of decision node is done and
collectively they form a test data. We call it chromo-
particle (as like called chromosome in [22]). Chromo-
particle is a binary string or an individual in the
population and every bit is corresponding to a decision
node. Every chromo-particle refers to a unique path
(generated by traversing source to destination). The
fitness value of this path can be calculated by equation 3.2.
Any change in bit values of this chromo-particle generates
a new path. Hence our target is to generate such chromo-
particle which can give higher fitness value. And for this
Binary PSO is used to get the optimum chromo-particle.
Note: Chromo-particle with high fitness value is
considered as a good solution. It is being presumed that no
loop is taken more than once as also in [22].

Step 5: Finally binary particle swarm optimization
algorithm is applied to this chromo-particle by initializing
the velocity and particle position values. The algorithm is
run until it finally reaches to some predefined number of
iteration or any predefined fitness value. The Binary PSO
finds the global best solution. This solution gives the
highest fitness value so far found in iteration. And we are
looking for the same higher fitness value. Better the fitness
value higher the priority should be given to that test data.
Binary particle swarm optimization algorithm is applied to
chromo particle on some random population by
initializing the particle and velocity values. The algorithm
is run until it reaches to some predefined value of iteration
or any predefined fitness value is obtained.

Proposed Methodology
Algorithm 1: Making CFG, Input: Activity Diagram
Output: Weighted Control Flow Graph

1. Convert the activity diagram into control flow graph
(CFG).

2. For every node in CFG assign weights by applying IF
metric concept which outputs a weighted CFG.

3. Identify the decision nodes and which forms collectively
a chromo particle.

Proposed Algorithm:

1. Input: Weighted Control Flow Graph Output: Highest
Priority Test Case

2. Generate (or update) the test data chromo-particle
population and its velocity using BPSO equations
(initially randomized)

3. For x = 1...n
4. Depth first search (DFS) is applied to CFG to identify the

paths.
5. fitness value for each test data is calculated by using

fitness function (equation 3.2) on the corresponding
path.

6. Local Best is calculated.
7. Calculate the Global Best value for all set of values.
8. If test data for all the values have not been covered, then

repeat the BPSO process.

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 03, Issue: 01 (JANUARY– FEBRUARY, 2017)

5

9. Else return the path corresponding to the last global
value obtained.

Case Study: Application for Credit Card Membership

S. No. Fitness_I Fitness_II Local Best, Particle

1 20 29 29, 00000

2 38 11 38, 11010

3 47 29 47, 11110

4 11 29 29, 00010

IV. Results and Analysis
Weight on CFG

NODE FI FO FI*FO NODE FI FO FI*FO

A 0 1 0 N 1 1 1

B 2 1 2 O 1 1 1

C 2 1 2 P 1 1 1

D 1 1 1 Q 1 2 2

E 1 2 2 R 1 2 2

F 1 1 1 S 1 1 1

G 1 1 1 T 1 1 1

H 2 1 2 U 1 1 1

I 1 2 2 V 1 1 1

J 1 1 1 W 1 1 1

K 1 1 1 X 1 1 1

L 1 1 1 Y 3 0 0

M 1 2 2

Weight Assignment (FAN_IN = FI; FAN_OUT = FO)

Local Best = Larger (Fitness I & Fitness II) Global Best =
Larger of all Local Best Values. Hence Global Best Value so
far from Iteration 1 & Iteration 2 is 47 and the particle is
11010

International Journal of Current Trends in Engineering & Technology
ISSN: 2395-3152

 Volume: 03, Issue: 01 (JANUARY– FEBRUARY, 2017)

6

Conclusion
Binary Particle Swarm Optimization (BPSO) technique is
used for identifying the best test path that must be tested
first. The activity diagram is converted into control flow
graph and further IF model is used to obtain the fitness
function which is required in BPSO to calculate the best
path. Previously a work is done in the same area using
Genetic Algorithm but proposed approach has given the
better result given in less number of iterations. There are
several basic variant of PSO. The basic variants have
supported in controlling the velocity and the stable
convergence. Modified variant PSO help the PSO to
process other conditions that cannot be solved by the
basic PSO.

References
[1]. Dian Palupi Rini & Siti Mariyam Shamsuddin-

International Journal of Computer Applications,
January 2011.

[2]. Sebastian Elbaum & Gregg Rothermel- Technical
Report # TR-UNL-CSE-2000 0005, August 2000.

[3]. R. Krishnamoorthi and S. A. Sahaaya Arul Mary-
International Journal of Hybrid Information
Technology, Vol.2, No.3, July, 2009.

[4]. Rania, Hassan Babak, Cohanim Olivier de Weck-
Massachusetts Institute of Technology, Cambridge, MA,
02139.

[5]. Tim Hendtlass, Centre for Information Technology
Research Swinburne University of Technology-IEEE
2007.

[6]. Qinghai Bai College of Computer Science and
Technology Inner Mongolia University for Nationalities
Tongliao 028043, China- Febuary 2010.

[7]. Application of Genetic Algorithm and Particle Swarm
Optimization in Software Testing - IOSR Journal of
Computer Engineering (IOSR-JCE), Deepti Arora,
Anurag Singh Baghel, Volume 17, Issue 1, Ver. II (Jan -
Feb. 2015)

[8]. Prof. Abdel-Hadi Nabih Ahmed & Prof. Atef M. A-
Moneim - International Journal of Hybrid Information
Technology, Vol.1, No.3, July, 2007.

[9]. S. Mirjalili, S.Z. Mohd Hashim, G. Taherzadeh, S.Z.
Mirjalili, and S. Salehi - Faculty of Computer Science
and Information Systems, University Teknologi
Malaysia, 81300 Skudai, Johor Bahru, Malaysia -
International Conference on Genetic & Evolutionary
Method-2011.

[10]. Thillaikarasi Muthusamy & Seetharaman. K , “A New
Effective Test Case Prioritization for Regression
Testing based on Prioritization Algorithm” ,
International Journal of Applied Information Systems
(IJAIS) – ISSN : 2249-0868, Volume 6– No. 7, January
2014.

[11]. Ya-Hui Jia & Wei-Neng Chen, “Generating Software Test
Data by Particle Swarm Optimization”, School of
Information Science and Technology, Sun Yatsen
University, Guangzhou, China.

[12]. I. K. El-Far and J.A. Whittaker, “Model-Based
Software Testing”, John J.Marciniak, “Encyclopedia
of Software Engineering”, vol. 1, pp. 825837, Wiley-
Inter Science, 2002.

[13]. L. Apfelbaum and J. Doyle, “Model-Based Testing”,
Software Quality Week Conference, May 1997.

