

COFINITELY *w*-SUPPLEMENTED MODULES

ZAHRA KAMALI HAMIDABADI

Babol Noshirvani University of Technology Bābol, Mazandaran, Iran kamalih57@gmail.com

Abstract: - Let R be a ring and M be an R-module. Then the following statements are equivalent.

- 1. *M* is cofinitely *w*-supplemented.
- 2. Every cofinitely semi simple sub module of *M* has a supplement that is a direct summand.
- 3. Every cofinitely semi simple sub module of *M* has a weak supplement.
- Every cofinitely semi simple sub module of *M* has a *Rad*-supplement.

Keywords: - Cofinite sub module; Cofinitely weak supplemented module; finitely weak supplemented module.

I. INTRODUCTION

Throughout this paper all rings are associative rings with identity and all modules are unital left *R*-modules. Let *R* be a ring and M be an *R*-module. The notation $N \subseteq M$ means that N is a sub module of MA sub module K of an Rmodule M is called small in M (denoted by K $\ll M$) if K + L = M for any sub module L of M implies L = M, see [7]. RadM indicates the Jacobson radical of *M*. A module *M* is called semi-hollow if every finitely generated proper sub module is small in M, or RadM = M, see [5]. Let *M* be an *R*-module and *A* and *B* be any sub modules of *MB* is called a supplement of *A* in M if *B* is minimal with respect to M = A + B. *B* is a supplement of *A* in *M* if M = A + B and $A \cap B$ \ll *B*, (see [5] 20.1). M is called supplemented if every sub module of *M* has a supplement in. *M* Artinian and semi simple modules are supplemented modules. For $A \subseteq M$, a sub module B of M is called a weak supplement of A in M if A + B = M and $A \cap B \ll MA$ sub module *N* of a module *M* is said to be cofinite if M/N is finitely generated. *M* is called a cofinitely supplemented module if every cofinite sub module of *M* has a supplement. We shall say that a module *M* is *w*-supplemented if every semi simple sub module of M has a

supplement in *M*. *M* is called cofinitely *w*-supplemented if every cofinitely semi simple sub module of *M* has a supplement in *M*.

II. COFINITELY W-SUPPLEMENTED MODULES

Lemma 2.1 Let M = N + L where L is a sub module of M and N is a cofinitely semi simple sub module of M.Then $M = N' \bigoplus L$ for some sub module N'of N.

Proof: - Let *N* be a cofinitely semi simple sub module of *M*. Then *N* ∩ *L* is direct summand in *N*. That is, *N* = (*N* ∩ *L*) ⊕ *N*['] for some sub module *N*['] of *N*. Since *M* = *N* + *L*, then we have *M* = ((*N* ∩ *L*) ⊕ *N*[']) + *L* = *N*['] + *L*. So *M* = *N*['] ⊕ *L* because (*N* ∩ *L*) ∩ *N*['] = *N*['] ∩ *L* = 0.

Lemma 2.2 Let U is a cofinitely semi simple sub module of M contained in Rad (M) Then U is small in M.

Proof:- Let $U \subseteq Rad$ (*M*), where *U* is cofinitely semi simple in *M*.Then *Soc* (*U*) ⊆ *Soc* (*Rad* (*M*)). Since *U* is cofinitely semi simple, *Soc* (*U*)= *U*.Then *U* ⊆*Soc* (*Rad* (*M*)). By 1.2 and by ([7], 19.3), *U* ≪ *M*.

Proposition 2.3 *Let R be a ring and M be an R-module. Then the following statements are equivalent.*

- 1. *M* is cofinitely w-supplemented.
- 2. Every cofinitely semi simple sub module of M has a supplement that is a direct summand.
- 3. Every cofinitely semi simple sub module of M has a weak supplement.
- 4. Every cofinitely semi simple sub module of M has a Rad-supplement.

Proof:-

(1)⇒ (2): Let *N* is a cofinitely semi simple sub module of *M*. By assumption, *N* has a supplement *K* in *M* for some sub module *K* of *M*. That is, M = N + K and $N \cap K \ll K$. By Lemma 2.1, $M = N' \bigoplus K$ for some sub module

N of *N*.

- (2) \Rightarrow (3): Let *N* is a cofinitely semi simple sub module of *MBy* (2), N has a supplement, so *N* has a weak supplement, since supplements are also weak supplements.
- (3)⇒ (4): Let *N* is a cofinitely semi simple sub module of *M*. Since *N* has a weak supplement, then there exists a sub module *K* of *M* such that N+K = M and $N \cap K \ll MBy$ Lemma 2.1, $M = N' \oplus K$ for some sub module N' of *N*.By ([7], 19.3(5)), $N \cap K \ll K$. This implies $N \cap K \leq Rad$ (*K*). Thus *K* is *Rad*supplement of *N* in *M*.
- (4)⇒ (1): Let N is a cofinitely semi simple sub module of M. By assumption, N has a Radsupplement K in M.Then M = N + K and $N \cap K$ $\leq Rad$ (K), also by ([7], 21.6(1) (i)) and considering inclusion map i: $K \to M$, we say K $\cap N \leq Rad$ (M) Then by Lemma 2.2, $K \cap N \ll$ M.Since N is cofinitely semi simple, Lemma 2.1, $M = N' \bigoplus K$ for some sub module N' of N. So we get $K \cap N \ll K$ by ([7], 19.3(5)).

Proposition 2.4 Any direct summand of a cofinitely w-supplemented module is cofinitely w-supplemented.

Proof: - Let *M* be cofinitely *w*-supplemented module and *N* be a direct summand of *M* so that $M = N \bigoplus K$ for some sub module K of M. Let *S* be cofinitely a semi-simple sub-module of N. If S = 0, then N is trivially cofinitely wsupplemented. Let S = 0, since $S \subseteq M$, then M = S+ T and $S \cap T \ll T$ for some sub module T of M. Then by the modular law, $N = S + (N \cap T)$ and consequently by Lemma 2.1, $N = S' \oplus (N \cap T)$ for some $S' \subseteq S$. That is, $N \cap T$ is a direct summand of *N*.If we are able to show that $S \cap (N \cap T) \ll N \cap T$, then we are done. Since $S \cap T \ll T$ by ([7], 19.3(4)) together with the inclusion map, $S \cap T$ \ll *M*, and since $S \cap T \subseteq N$, then by ([7], 19.3(5)) *S* $\cap T \ll N$ and consequently $S \cap (N \cap T) \ll N \cap T$, because $(S \cap T) \cap N = S \cap T \subseteq N \cap T$. Therefore $N \cap$ *T* is a supplement of *S* in *N*.

Proposition 2.5 Any finite direct sum of cofinitely w-supplemented modules is cofinitely w-

supplemented.

Proof: - It is sufficient to prove for the case *M* = $M_1 \oplus M_2$ where M_1 and M_2 are cofinitely *w*-supplemented modules, then result follows inductively. For i = 1, 2, let $p_i: M \to M_i$ be the projection map. Let *L* be a cofinitely semi simple sub module of *M*. Then so are the modules $p_1(L) = (L + M_2) \cap M_1$ and $p_2(L) =$ $(L + M_1) \cap M_2$. Then $p_1(L)$ and $p_2(L)$ have supplements H1 and H2 in M1 and M2 respectively. M1 + M2 + L have a supplement 0 in *M.* By ([6], Lemma 1.3), *H*₂ is a supplement of $M_1 + L$ in *M*.Also we may say that $(L + H_2) \cap M_1 \subseteq (L + M_2) \cap M_1 = p_1(L)$ means $(L + H_2) \cap M_1$ is also cofinitely semi simple, and then has a supplement *K* in *M*1. Again applying ([6], Lemma 1.3), $H_2 + K$ is a supplement of *L* in *M*.Hence *M* is cofinitely *w*supplemented.

Proposition 2.6 *M* is cofinitely w-supplemented if and only if *M* is amply cofinitely w-supplemented.

Proof: - (\Leftarrow) Obvious.

 (\Rightarrow) Let M = A + B where A is cofinitely semi simple. Since *A* is cofinitely semi simple, then so is $A \cap B$ and hence by Lemma 2.1, $M = Y_1$ \bigoplus *T* for some sub module *Y*₁ of *A* \cap *B* and some supplement T of $A \cap B$ in M. By the modular law, $A \cap B = Y1 \bigoplus (A \cap B \cap T)$. Let call $A \cap B$ $\cap T = S$ and by applying the modular law once more to $M = Y_1 \bigoplus T$, we get $B = Y_1 \bigoplus (B \cap T)$. Let call $B \cap T = Y_2$. We consider the projection mapping $\pi: Y_1 \bigoplus Y_2 \rightarrow Y_2$, then $A \cap B = Y_1 \bigoplus S =$ $Y_1 \oplus (A \cap (B \cap T)) = Y_1 \oplus (A \cap Y_2) = Y_1 \oplus (A \cap Y_2 \cap T)$ *B*) since $Y_2 \subseteq B$. Then $A \cap Y_2 = A \cap B \cap Y_2 = \pi$ ($A \cap$ B) = π (Y₁ + S) = π (S). Then by ([7], 19.3(4)), $A \cap Y_2 = \pi(S)$ is small in $\pi(T)$ and consequently in *Y*2. Also $M = A + B = A + Y_1 + Y_1 + Y_2$ $Y_2 = A + Y_2$. Therefore A has supplement Y_2 contained in B.

Lemma 2.7 Let *M* be an *R*-module with Soc (*M*) \ll *M*, then *M* is cofinitely *w*-supplemented.

Proof. Obviously, if *Soc* (M) = 0, then *M* is cofinitely *w*-supplemented. Let *N* be a nonzero cofinitely semi simple sub module of *M*, then *N* \subseteq *Soc*(*M*), so *N* is small in *M* too, then *M* = *M* + *N* and $M \cap N = N \ll M$.

Lemma 2.8 M is cofinitely w-supplemented if and only if Soc (M)has a supplement in M.

Proof: - (\Rightarrow) Straightforward.

(⇐) Let *V* be a supplement of *Soc* (*M*) in *M*, then M = Soc(M) + V and $Soc(V) = Soc(M) \cap V$ ≪ *V*, then by Lemma 2.7, *V* is cofinitely *w*supplemented. Since $M = S \oplus V$ where *S* is a cofinitely semi simple sub module of *M* by Lemma 2.1, then by 2.5, *M* is cofinitely *w*supplemented. A sub module *N* of a module *M* is said to be radical, if *Rad* (*N*)= *N*.

Proposition 2.9 *Every radical module M is cofinitely w-supplemented.*

Proof: - Let *M* be a radical module, that is, M = Rad(M), then *Soc* (*M*) = *Soc* (*Rad* (*M*)) \ll *M* by 2.2 and then by 2.7, *M* is cofinitely *w*-supplemented.

REFERENCES

- [1]. R. Alizade, G. Bilhan and P. F. Smith, *Modules whose* maximal sub module have supplements, Comm. Algebra. 29, 2389–2450, (2001).
- [2]. R. Alizade, E. Büyükasik, Cofinitely Weak Supplemented Modules. Communication in Algebra. 31, 5377 – 5390 (2003).
- [3]. G. Bilhan, *Totally Cofinitely Supplemented Modules*. *Int. Electron. J. Algebra.* 2, 106–113, (2007).
- [4]. E. Büyükasik, E. Mermut and S. Ozdemir, *Rad-supplemented modules, Rend. Sem. Mat. Univ. Padova, Vol.* 124, 157–177, (2010).
- [5]. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules. Birkhauser* 2006.
- [6]. A. Harmanc, D. Keskin, P. F. Smith, On ⊕supplemented Modules. Acta Math. Hungarica. 83, 161.169(1999).
- [7]. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, (1991).