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Abstract

Non-Orthogonal Multiple Access (NOMA) has emerged as
a pivotal technology for 5G and beyond wireless networks,
which promises the significant enhancements in spectral
efficiency through power-domain multiplexing. However,
the practical realization of benefits of NOMA critically de-
pends on solution of the complex user pairing problem,
which determines which users should be grouped for si-
multaneous transmission. This paper basically addresses
the critical user pairing challenge in NOMA systems by
proposing a novel K-Medoids clustering algorithm. The
proposed algorithm optimizes user pairing based on a com-
prehensive feature vector incorporating channel gain mag-
nitude, angular separation, and potential the signal-to-
interference-plus-noise ratio (SINR). The pairing problem
is formulated as a clustering optimization with a custom
distance metric that balances the channel gain differences
and spatial characteristics. The simulation results show the
proposed method achieves higher spectral efficiency than
the exhaustive search, random pairing, and channel gain
difference (CGD), and reduces complexity. The proposed
algorithm maintains a Jain’s index at excellent level. The
proposed algorithm demonstrates robustness across vary-
ing user densities while maintaining excellent fairness.
Keywords: NOMA, User Pairing, K-Medoids, Spectral
Efficiency, Clustering, 5G

1 Introduction

The exponential growth of mobile data traffic with the
modern emerging applications such as augmented and
virtual reality, autonomous vehicles, and the Internet of
Things (IoT) has imposed huge and unprecedented de-
mands on the wide capacity of wireless networks [Il 2.
According to recent data from the “International Telecom-
munication Union” 2025 [3], there are 6 billion Internet
users worldwide, which is around 74% of the world’s pop-
ulation. This staggering growth requires revolutionary ad-
vancements in spectral efficiency, which have emerged as
a critical performance metric for fifth-generation (5G) and
beyond wireless networks.

The Orthogonal Multiple Access (OMA) techniques,
which include Orthogonal Frequency Division Multiple
Access (OFDMA) and Time Division Multiple Access
(TDMA), have been the cornerstone of conventional cel-
lular generations [4, B]. However, these orthogonal tech-
niques inherently limit the number of simultaneously
served users to the number of available orthogonal re-
sources, it fundamentally constrains the network capac-
ity. The NOMA overcomes this limitation through non-
orthogonal resource sharing, which enables multiple users
to be served simultaneously on the same time-frequency
resource block through power-domain multiplexing [6] [7].
NOMA is mainly a transformative technology for 5G wire-
less networks. The key features such as low latency, mas-
sive connectivity, and extremely high data rates are largely
supported by NOMA-based systems designed principles
[8,[9]. By operating in the power domain, NOMA enables
multiple users to share the same time, frequency, or code
resources that are already assigned to a particular mobile
device [I0]. The core operational principle of the NOMA
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Fig. 1: Operational Principle of Non-Orthogonal Multiple
Access

(as illustrated in [Fig. 1)) technique involves these two key
components:

e Superposition Coding: It works at the transmitter,
where signals for multiple users are combined with dif-
ferent power levels.

e Successive Interference Cancellation (SIC): It
mainly works at the receivers, where the users sequen-
tially decode and subtract interference from stronger
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users before decoding their own signals.

This paradigm shift from the orthogonal to the non-
orthogonal access allows the NOMA technique to achieve
the capacity region of broadcast channels, which offers sub-
stantial improvements in spectral efficiency, user fairness,
and massive connectivity.

However, the practical realization of the benefits of the
NOMA critically depends on solution of these two funda-
mental challenges:

e Optimal User Pairing: It basically determines
which users should be grouped together for superpo-
sition coding.

e Efficient Power Allocation: It assigns appropriate
power levels to paired users.

Moreover, the user pairing identification is particularly cru-
cial, as improper pairing can lead to severe inter-user inter-
ference, SIC failure, and ultimately, performance degrada-
tion that negates the advantages of the NOMA technique.

1.1 Problem Statement and Research Gap

The user pairing problem in the NOMA can be formulated
as a combinatorial optimization problem where K users
must be partitioned into M clusters of size N, with the
objective of maximizing the sum spectral efficiency under
power constraints. The exhaustive search approach to this

K!
)

(NDMMT
which becomes prohibitively complex for practical net-
works with tens or hundreds of users.

Existing approaches to user pairing can be broadly cat-
egorized as:

problem has computational complexity of (’)(

1. Channel Gain Difference (CGD)-based
Method: It usually pair users with large chan-

nel gain differences to facilitate SIC.

. Random Pairing: It is a simple but sub-optimal
approach and its performance is unpredictable.

Greedy Algorithms: These iteratively select user
pairs based on immediate gain.

Matching Theory-based Approaches: These are
formulated as bipartite matching problems.

Deep Learning (DL) Method: It is neural
network-based learning method to learn pairing pat-
terns.

Despite these advancements, there are some significant
limitations and research gaps. Most of the existing meth-
ods only focus on channel gain differences, they ignore spa-
tial correlation and angular characteristics. Many meth-
ods lack robustness to channel outliers and variation in

48

the user distributions. There are limited consideration on
maximization of the spectral efficiency. There is a notable
trade-off between computational complexity and optimal
solution that has not been adequately addressed in the
modern research.

2 Related Work

NOMA is a crucial technology for 5G and future wireless
communications and networks, which provides the facilities
of massive connectivity and high-speed data transmission
within the limited spectral resources. This section presents
a comprehensive literature review on NOMA systems with
AT techniques.

Alajmi and Ghandoura [I1] introduced a practical deep
reinforcement learning (DRL)-based multi-carrier grant-
free NOMA scheme for IoT that works for imperfect suc-
cessive interference cancellation (SIC). By allowing each
user to learn its own resource allocation policy, the scheme
improves spectral efficiency and increases user fairness by
up to 62% compared to existing approaches. Khan et al.
[12] proposed a power-domain NOMA-based resource op-
timization scheme for IoT. This scheme jointly allocates
the frequency blocks and the power under practical con-
straints, which achieves higher spectral efficiency than ex-
isting NOMA and OMA methods.

Perdana et al. [13] proposed an adaptive user pairing
framework for multi-IRS—assisted massive MIMO-NOMA.
It applies iterative optimization and deep learning to ef-
ficiently maximize the spectral efficiency under practical
constraints. Periyathambi and Ravi [14] discussed the role
of MIMO-NOMA to fulfill 5G capacity and efficiency de-
mands, so they proposed a hybrid salp swarm and crowd
search algorithm for downlink power allocation. This ap-
proach improves the spectrum utilization, throughput, and
energy efficiency and achieves notable spectral and energy
efficiency gains across different antenna configurations.

Wang et al. [I5] proposed a deep reinforcement learning
(DRL)-based resource allocation framework for mmWave
massive MIMO-NOMA.. It jointly optimizes the user group-
ing, subchannel assignment, and power allocation. This
approach combines enhanced K-means clustering, a du-
eling deep @Q-network (DQN) for subchannel allocation,
and a “deep deterministic policy gradient” (DDPG)-based
power control scheme. This approach achieves faster con-
vergence and higher system capacity than existing algo-
rithms.

Cui et al. [I6] proposed K-means-based offline and on-
line user clustering algorithms for mmWave-NOMA sys-
tems, combined with optimal power allocation, to maxi-
mize sum rate. This approach improves the spectral effi-
ciency, handles dynamic user arrivals efficiently, and bal-
ances performance with computational complexity. A.
Vijay [17] proposed a MIMO technique with a “multi-
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carrier code-division multiple access (MC-CDMA)” frame-
work combined with SIC, enhanced by DL and bio-inspired
optimization, for improving spectrum and energy efficiency
in 5G. This approach enables dynamic resource alloca-
tion, interference reduction, lowered latency, and increased
throughput, hence improving overall 5G network perfor-
mance.

Prameela and Srilakshmi [I8] proposed the “hybrid
attention-aware spectrum predictor (HASP),” which is a
combination of DL and ML framework for mmWave mas-
sive MIMO-NOMA systems. It predicts spectrum avail-
ability and attention-enhanced user clustering. The ap-
proach improves the spectral efficiency by 28%, the predic-
tion accuracy is improved by 35%, and the computational
load reduction is 45%, which finally meets the QoS require-
ments of the users and hence allows for more efficient 5G
and beyond communications.

Luo et al. [19] proposed a distributed “multi-agent dou-
ble deep @Q-network and double multi-agent deep determin-
istic policy gradient (MADDQN-DMADDPG)” for “simul-
taneous wireless information and power transfer (SWIPT)”
systems. They used massive MIMO-NOMA with optimiza-
tion of user scheduling, power allocation, and power split-
ting. Their approach improves energy efficiency, mitigates
the multi-user interference, and achieves a fast, stable con-
vergence. Farghaly et al. [20] proposed a “wavelet packet
transform (WPT)-NOMA” system with a “complex valued
convolutional neural network” (CVNN)-based SIC receiver
that pairs users via wavelet packet transform to improve
spectral and energy efficiency and reliability. The approach
outperforms conventional NOMA in bit error rate (BER),
spectral efficiency, energy efficiency, and outage probabil-
ity by efficient detection of signals using DL-enhanced re-
ceivers.

Zhang et al. [2I] proposed a NOMA-assisted aerial edge
computing system using a DRL-DGSN algorithm to op-
timize UAV trajectories, power allocation, and user asso-
ciation jointly. By taking advantage of multi-agent DRL
and successive interference cancellation, their approach im-
proves the system throughput, balances the UAV work-
loads, and outperforms existing methods in efficiency and
training stability. Nguyen et al. [22] proposed a multi-
cell, multi-subband NOMA resource allocation framework
that basically combines meta-learning, federated learning,
and multi-agent reinforcement learning. It jointly opti-
mizes power and sub-band allocation, which enables rapid
adaptation to dynamic network conditions, improves en-
ergy efficiency, and outperforms benchmark methods in
scalability and robustness.

Beena and Sameer [23] presented a DL-based MIMO-
NOMA receiver for vehicular communications using “long-
short-term memory (LSTM)” for joint channel estima-
tion and signal detection. It achieves higher accuracy,
lower outage probability, better fairness, improved sym-
bol error rate (SER) performance, greater robustness to
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channel variations, and lower computational complexity as
compared to the traditional SIC methods. Rezwan and
Choi [24] proposed a Q-learning-based resource allocation
with priority-based device clustering for 5G NOMA. It pri-
oritizes the ultra-reliable and low-latency communication
(URLLC), enhanced mobile broadband (eMBB), and mas-
sive machine-type communication (mMTC) devices. This
approach meets quality of service (QoS) requirements and
achieves a higher sum rate compared to other methods.

Chebbi et al. [25] investigated mmWave mMIMO in-
tegrated with NOMA for IoT in 5G and introduced joint
user clustering and power control algorithms that exploit
spatial channel correlations. Their approach enhances the
spectral efficiency, supports more users with limited RF
chains, and improves the utilization of wireless resources
while meeting the requirements of QoS. Ji et al. [26] pro-
posed a CNN-LSTM-based NOMA algorithm for train-to-
train (T2T) communication, which optimizes the channel
modeling and the power allocation. Their approach im-
proves the spectral efficiency compared to traditional zero
forcing (ZF) and minimum mean square error (MMSE)
methods, reduces errors with training, and meets low-SNR,
T2T requirements.

H.M. and Anuradha [27] proposed a “multi-carrier in-
dex keying NOMA (MCIK-NOMA)” system that basically
combines NOMA with index modulation to improve the
spectral and energy efficiency. The performance analysis
under various fading channels and channel state informa-
tion (CSI) conditions shows that MCIK-NOMA outper-
forms traditional NOMA and OMA in BER, spectral, and
energy efficiency. Karem and Chaitanya A. [28] proposed a
low-complexity DNN-based resource allocation scheme for
single-cell NOMA-IBFD systems. It uses input preprocess-
ing and a penalty-based custom loss to handle constraints.
It also uses a projection method to balance sum-rate per-
formance and achieves feasible power allocation with re-
duced computational complexity.

He et al. [29] proposed a NOMA maritime network us-
ing “federated multiagent deep @-network (FLMADQN)”
for power allocation. Their approach improves system
throughput, spectral efficiency, and convergence speed
while preserving data privacy. It outperforms the con-
ventional DRL and DQN methods in maritime IoT sce-
narios. Hamedoon et al. [30] proposed a RIS-assisted
downlink NOMA framework for IoT networks, which op-
timizes power allocation and RIS phase shifts to enhance
the energy efficiency and system throughput. This frame-
work basically combines clustering, alternating optimiza-
tion, Karush-Kuhn-Tucker (KKT)-based refinement, and
ML-DL-RL approaches to significantly improve the sum
rate and the energy efficiency in dynamic 6G environments.

Kara et al. [3I] analyzed the error performance
of “NOMA-based cooperative relaying systems (NOMA-
CRS)” over Nakagami-m fading and derived closed-form
bit error probability (BEP) expressions. They also pro-
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posed an ML-assisted joint power sharing and allocation
scheme that minimizes BER with low complexity and out-
performs previous strategies. Li et al. [32] proposed a
UAV-assisted NOMA relay scheme that jointly optimizes
user scheduling, power allocation, and UAV trajectory to
maximize energy efficiency. This scheme basically decom-
poses the non-convex problem into subproblems and solves
it using integer programming, convex optimization, and
successive convex approximation (SCA). This scheme out-
performs benchmarks and extends the network lifetime.

Hu et al. [33] proposed a NOMA-enabled “federated
edge learning (FEEL)” framework for 5G IoT networks to
reduce the energy consumption of devices. This frame-
work improves the energy efficiency using optimization
of resource allocation and device pairing while preserving
the data privacy. Their simulations show it outperforms
TDMA-based FEEL in terms of energy savings. Gupta
et al. [34] proposed an “energy-efficient downlink multi-
carrier NOMA” framework. It introduces a least user
sum gain-based user assignment algorithm and a hybrid
power allocation scheme combining penalty methods, par-
ticle swarm optimization, and bisection. Their approach
significantly improves energy efficiency, throughput, fair-
ness, and outage performance. It achieved up to 48.67% en-
ergy efficiency gains over existing resource allocation meth-
ods.

3 System Model

This section presents the mathematical model, which pro-
vides the fundamental concept and purpose to evaluate K-
Medoids clustering to improve spectral efficiency by form-
ing the clusters that basically minimize the intra-cluster
interference differences while maximizing the inter-cluster
separation.

A downlink NOMA system with a single base station
(BS) is considered to serve K number of users. The users
are grouped into M number of clusters, where each cluster
contains N users (K = M x N). The transmitted signal
from the BS to the m'™ cluster is expressed as:

N
Ty = Z vV Pm,nsm,n (1)
n=1

where, P, ,, denotes the allocated power for the user n in
cluster m, and s,, , denotes the message signal for the user
n in cluster m with E[|s,, ,|?] = 1.

3.1 Channel Model

The channel gain basically quantifies how much a wire-
less signal is amplified or attenuated as it travels from the
transmitter to the receiver. The channel gain between the
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BS and user k is expressed as:

hie =/ Brgr (2)

where (i represents the large-scale fading (path loss and
shadowing), and g ~ CN(0, 1) represents the small-scale
Rayleigh fading component. Without any loss of general-
ity, the users are ordered based on their channel gains:

|ha? > |ho|* > -+ > |hg|?

3)

3.2 Received Signal and SINR

The received signal at user n in cluster m is:

Yl
j#m
——

Inter-cluster inference

Ym,n = hm,nxm + +wm,n (4)

where w,, , ~ CN(0,0?) is additive white Gaussian noise

(AWGN).

For NOMA with successive interference cancellation
(SIC), the signal-to-interference-plus-noise ratio (SINR) for
user n in cluster m to decode its own signal after perfect
cancellation of stronger intra-cluster signals is:

Pm,n|hm,n 2
TYm,n = N N
Z Pm,ilhm,n|2 + Z ZPJ, hm,nl2 +02
i=n+1 j#m i=1

Uncancelled intra-cluster Inter-cluster

(5)
The interference modeling captures both the intra-cluster
and inter-cluster interference.

3.3 Spectral Efficiency

The spectral efficiency for user n in cluster m is given by:
R = 10gy (14 Ym,n) (6)

The total spectral efficiency of the system is:

M N
Riotal = Z Z Rm7n

m=1n=1
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3.4 Problem Formulation

The user pairing optimization problem is formulated as:

mCaX Riotal (C)

st. C= {01702,. . 7CY]\/[}
Ciij:(Z), Vl#]
M
U Cm=u ®)
m=1
|Cn| =N, ¥Ym=1,...,M
N
Z-Pm,ngptotalv vm
n=1

where U = {1,2,..., K} is the set of all users, and C rep-
resents the clustering configuration.

4 Proposed Methodology

The proposed method employs K-Medoids clustering to
group users based on their channel characteristics for op-
timal NOMA pairing. The medoid represents the most
centrally located user in each cluster, which provides ro-
bustness to the outliers compared to K-Means.

4.1 Feature Vector Design

For each user k, a feature vector f that captures the chan-
nel characteristics relevant for the NOMA pairing is defined
as: .

fr = ||k, Zhi, Br, SINRIOMA) 9)
where SINR,(COMA) is the SINR, which the user k experi-
ences in an orthogonal multiple access system.

4.2 Distance Metric

The distance between two users ¢ and j is defined as a
weighted combination of the channel gain difference and
the angular separation:

d(i, j) = o~ ||ha|* = |hy[?| +
(1 — a) Hlln(|4hz - 4hj|, 2m — |4hz - 4h]|) (10)

where « € [0,1] is a weighting parameter that balances the
importance of channel gain difference and angular separa-
tion.

The overall steps of the proposed method are illustrated
in Initially, the required system parameters are ini-
tialized and calculated, and the CSI is collected, which ex-
tracts the feature vectors. The K-Medoid is initialized ran-
domly using these feature vectors, and users are assigned
to their nearest Medoid. If the value of the Medoid is con-
vergence, then NOMA clusters are formed; otherwise, the

value of the Medoid of the cluster is updated. The power
allocation method is applied to each NOMA cluster, and
spectral efficiency is finally calculated.

Initialization of System
Parameter

!

Collection of Channel
State Information (CSI)

v

Extraction of Feature

Vectors

!

Initialization of Medoids
(Randomly)

!

Assignment of Users to
Nearest Medoid

}

No | Update

>
Convergence? Medoid

v Yes

Formation of NOMA
Clusters

v

Applying Power
Allocation

y

Spectral Efficiency

Calculation

Fig. 2: K-Medoids-based User Pairing

4.3 Algorithm

The K-Medoids-based user pairing for NOMA clustering
algorithm is presented in Algorithm

4.4 Jain’s Fairness Index Analysis

Jain’s fairness index (0 to 1) [35] is a quantitative mea-
sure of how fairly resources are allocated among users in
a system. For NOMA systems, it quantifies the equity of
spectral efficiency distribution among all users.

(shm)

jf
K-S R}

(11)

where Ry, denotes the spectral efficiency (achievable rate)
of user k (total number of users in the system).
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Algorithm 1 K-Medoids Based User Pairing for NOMA

Require: Set of users U = {1,2,..., K}, number of clus-
ters M, maximum iterations Ty,.x, convergence thresh-
old €

Ensure: Clustering configuration C = {C1,C5,...
total spectral efficiency Riotal

1: Collect CSI for all users hy,Vk € U
2: Extract feature vectors fj using @

Initialize medoids: Randomly select M users as initial

medoids M(©) = {mgo), méo), . ,mg\(/)l)}

t+0

A + o0

while ¢t < Ty, and A > € do

Assignment Step:
for each user k € U do
Find closest medoid: ¢

,Cun},

o

,(:) = argmin,, c v d(k, m)

10: Assign user k to cluster CC@)
k

11:  end for

12:  Update Step:

13:  for each cluster C;,i =1,..., M do

14: Compute new  medoid:

argmingec; Y _jec, d(k, J)

15:  end for

16:  Compute change: A = Zf\il d(mgt)7 mgtﬂ))

17: t+—t+1

18 MO — (D mP

19: end while

20: Power Allocation:

21: for each cluster C;,i=1,..., M do

22:  Sort users in C; by channel gain: |h;1[> > |h;2|* >
o > |hin|?

23:  Allocate power using fractional transmit power allo-
cation (FTPA):

24: P, = Piotal|hin| ™"

S lhiglmn?
25: end for
26: Performance Evaluation:
27: Compute SINR 7, ,, using
28: Compute spectral efficiency Rioa using
29: return C, Riotal

m§t+1) s

,miy]}

N

n=1,...

The Jain’s fairness index basically exhibits its range
% < J <1, where J = % is the maximum unfairness
(worst fairness), where all the resources are allocated to
a single user, and J = 1 is considered the best fairness,
where all users achieve identical rates. This index is scale
independent, which means it is unaffected by the absolute
magnitude of rates. It has the continuity property, small
changes in the rate distribution result in small changes in
the value of J.

For NOMA systems with K users partitioned into M
clusters of size IV, the fairness index is expressed as:

(S0 50 R
CE S YR,

where Ry, ,, = logs(1 + i) is the spectral efficiency of
the user n in the cluster m, and ~,,,, is its corresponding
SINR.

For scenarios with different quality-of-service (QoS) re-
quirements, a weighted Jain’s index can be employed:

2
K

7 (Zkzl kak)

w = 74

K3 (wp Ry )?
where wj, represents the priority weight assigned to the

. K

user k, with > ;" wi, = 1.

provides guidelines for interpreting Jain’s index
values in NOMA systems:

J (12)

(13)

Table 1: Interpretation of Jain’s Fairness Index in NOMA
Systems

Jain’s Index Fairness Interpretation in

Range NOMA Context

J > 0.9 Excellent All the users receive compa-
rable service quality

0.8<J <09 Good Acceptable for most applica-
tions

0.7 < J <0.8 Moderate Potential user dissatisfac-
tion at cell edge

0.6 <J <0.7 Poor Cell-edge users severely get
disadvantage

J <0.6 Unacceptable Requires immediate reme-

dial action

4.5 Computational Complexity Analysis
of the Proposed Algorithm

The computational complexity of the proposed algorithm
is mainly dominated by the K-Medoids clustering. The as-
signment step involves O(K - M) per iteration. The update
step require O(|C;|?) steps for each cluster, total O(K?/M)
in the worst case. Finally, the overall complexity represents
O(T - (K -M + K?/M)), where T is number of iterations.
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5 Results Analysis

The represents basic parameters for simulation and
their values. The simulations were conducted in Python

Table 2: Simulation Parameters

Parameter Value
Cell radius 500 m
Number of users, K 30, 60, 90
Users per cluster, N 2

Carrier frequency 2 GHz
Bandwidth 10 MHz
Transmit power, Piotal 46 dBm

Path loss model
Shadowing standard deviation

128.1 + 37.6log,(d) dB
8 dB

Small-scale fading Rayleigh
Noise power spectral density -174 dBm/Hz
Number of Monte Carlo runs 5000

on a computer system with the specifications presented in

[Table 3t

Table 3: Hardware Configuration for NOMA Simulation

Component Specification

Processor Intel Core i5-12400 @ 2.5 GHz
CPU Cores 6 Cores / 12 Threads

RAM 16 GB DDR4 @ 3200 MHz
Cache 18 MB Intel Smart Cache
Storage 1 TB NVMe SSD

Operating System  Linux (Ubuntu 24.04 LTS)

The illustrates the sum spectral efficiency in bps
per Hz over transmit power for proposed and different pair-
ing algorithms. The proposed K-Medoids method repre-
sents the maximum spectral efficiency compared to the ex-
haustive search, random pairing, and CGD.

The illustrates the computational complexity of
proposed method with comparison of different pairing al-
gorithms. The execution time of proposed method is lower
compared to the exhaustive search, random pairing, and
CGD.

The fairness performance is a critical metric in NOMA
systems, as aggressive spectral efficiency optimization can
lead to starvation of cell-edge users. The illustrates
the Jain’s fairness index for different pairing algorithms
across varying user densities.

The proposed K-Medoids algorithm maintains a Jain’s
index 0.94 for 30 users and above 0.87 even for 100 users,
which demonstrates excellent fairness characteristics. This
robustness stems from the use of proposed method for ac-
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Fig. 3: Sum spectral efficiency vs. transmit power for dif-
ferent pairing algorithms (K = 30)
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Fig. 4: Computational Complexity Comparison of Differ-
ent Pairing Algorithms

tual users as medoids, which prevents the formation of ex-
treme clusters.

The convergence behavior of proposed K-Medoids
method for different user densities is illustrated in [Fig. 6]

The statistical analysis reported in reveals that
the proposed K-Medoids achieves the smallest standard
deviation among the the exhaustive search, random pair-
ing, and CGD algorithms (o = 0.03), which indicates con-
sistent performance across channel realizations. The 95%
confidence interval [0.90, 0.92] demonstrates that fairness
with increasing user count is both predictable and graceful.
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Fig. 5: Fairness Performance Comparison using Jain’s Fair-
ness Index
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Fig. 6: Convergence Behavior of K-Medoids Algorithm for
Different User Densities

Table 4: Statistical distribution of Jain’s fairness index

Metric K-Medoids Exhaustive CGD Random
Mean () 0.91 0.89 0.83 0.79
Median 0.89 0.83 0.91 0.79
Std. Dev. (o) 0.02 0.03 0.06 0.08
95% CI [0.90, 0.92] [0.88, 0.90] [0.81, 0.85] [0.77, 0.81]
Min 0.86 0.82 0.70 0.65
Max 0.95 0.94 0.90 0.88

6 Conclusion

This paper has addressed the critical challenge of user
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pairing in downlink NOMA systems through a novel
K-Medoids clustering-based approach. The proposed
methodology fundamentally transforms the user pair-
ing problem from a combinatorial optimization with ex-
ponential complexity to the other clustering problem
with polynomial-time complexity, while maintaining near-
optimal performance.
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