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Abstract

Ransomware has emerged as one of the most pervasive and
damaging cybersecurity threats, with attacks targeting in-
dividuals, corporations, and critical infrastructure. Tra-
ditional detection techniques such as signature-based and
heuristic methods often fail to identify novel or obfuscated
ransomware variants, especially those employing polymor-
phic and zero-day tactics. This research proposes an Ad-
vanced Ransomware Detection Framework that syn-
ergizes digital forensics with deep learning techniques to
detect and classify ransomware effectively. The framework
begins with the forensic acquisition of behavioral data,
including system calls, registry modifications, file system
changes, and entropy analysis. These artifacts are then
processed to extract static and dynamic features that cap-
ture both execution patterns and contextual anomalies.
The results demonstrate that the fusion of forensic intelli-
gence and deep behavioral modeling offers a powerful and
scalable solution for ransomware detection, promising real-
world applicability in enterprise and cloud security environ-
ments.
Keywords: Ransomware Detection, Digital Forensics,
Deep Learning, CNN-LSTM, Malware Analysis, Behav-
ioral Modeling

1 Introduction

Ransomware has evolved into a dominant threat land-
scape in cybersecurity, observed across both personal and
enterprise computing environments. Unlike conventional
malware, ransomware not only infects systems but also
encrypts or locks access to critical files, demanding
payment for restoration [1, 2]. The proliferation of
internet-connected devices, the rapid rise in data digitiza-
tion, and the lucrative nature of cryptocurrency payments
have made ransomware attacks more frequent and impact-
ful. The increasing complexity of ransomware families,
obfuscation strategies, and novel delivery channels present
enormous challenges for defenders [3, 4].

Despite advances in security technologies, signature-
based approaches are consistently evaded by previ-

ously unseen variants or those utilizing polymorphism.
Consequently, defenders are shifting towards intelligent,
behavior-based, and forensics-driven detection integrated
with deep learning to strengthen resilience and proactive
response [1, 2, 4].

1.1 Ransomware: Evolution

Ransomware is a form of malicious software that denies
access to computer resources by encrypting files or entire
file systems, releasing them only upon payment of a ran-
som [2, 5]. Since the appearance of early ransomware such
as “AIDS Trojan” (1989), the ecosystem has seen a rise
in volume and sophistication, including use of asymmetric
cryptography (e.g., CryptoLocker), peer-to-peer payment
technologies (e.g., Bitcoin), and targeted extortion [1, 6].

Typical ransomware attack life cycle consists of:

• Initial infection (phishing, exploit kits, RDP brute
force),

• Payload deployment and lateral movement,

• File encryption and data exfiltration,

• Ransom note delivery and extortion,

• Payment and (sometimes) partial or no decryption.

Trends indicate malware authors employ digital obfusca-
tion, anti-forensic strategies, and increasingly use zero-day
exploits or novel propagation strategies, demanding con-
stant innovation in detection frameworks.

2 Related Work

Ransomware is a class of malware that restricts access
to a victim’s files until a ransom is paid which has
rapidly evolved due to cyber-criminals leveraging encryp-
tion and obfuscation techniques. Conventional signature
and pattern-based detection strategies often fail against
new and heavily obfuscated ransomware variants [7]. Con-
sequently, research has increasingly focused on combining
digital forensics and advanced machine or deep learning
techniques to improve detection, response, and attribution
capabilities.
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2.1 Memory Forensics-based Ransomware
Detection

Aljabri et al. [8] proposed a machine learning-based ran-
somware detection model using memory analysis with an
enhanced VolMemLyzer tool. Using only 16 memory fea-
tures, they used a newly created dataset of recent ran-
somware families and achieved 97% accuracy with a Ran-
dom Forest model. Their method outperformed traditional
detection techniques and compares well with similar re-
search.

Arfeen et al. [9] presented a framework to detect ran-
somware through memory forensics. Due to obfuscation,
since ransomware often evades traditional static or behav-
ioral analysis. Their proposed approach collects multiple
memory dumps over time to better analyze process be-
havior. Features extracted from these dumps are used in
machine learning models to more accurately classify mali-
cious and benign processes, which offered improved detec-
tion over conventional methods.

To recover encryption keys from ransomware, Bajpai and
Enbody [10] explored physical memory forensics, which en-
ables data decryption without paying a ransom. Their ap-
proach analyzed memory during the encryption process,
and extracted both symmetric and asymmetric keys suc-
cessfully from real-world ransomware. They also tested
custom ransomware with a hybrid cryptosystem to calcu-
late the limitations of their research. Their results showed
that encryption keys often remain in memory long enough
to allow full data recovery.

Zhang et al. [11] represented a major advancement in
cybersecurity, particularly in ransomware detection and
analysis. They demonstrated the effectiveness of combin-
ing memory forensics with the LLaMA-7B Large Language
Model to identify ransomware activity through pattern and
anomaly detection in system memory. Their research ad-
dressed emerging ransomware techniques, such as data ex-
filtration over encryption. It showed that AI models like
LLaMA-7B can adapt to these changes. They also high-
lighted ethical considerations in using AI for cybersecurity.
Their research provided valuable information and points to
the integration of AI and memory forensics as a promising
path forward.

As cybercrimes caused significant financial damage,
largely due to the ongoing threat of ransomware. It be-
came an advanced, obfuscated form of malware that en-
crypted systems using complex keys, often forced victims
to pay ransoms. With everyone at risk, cyber forensics
plays a crucial role in both raising awareness and com-
bating these attacks. Among its various branches, mem-
ory forensics stands out as particularly effective against
ransomware. Joseph and Norman [12] highlighted the im-
portance of memory forensics, analyzed how ransomware
operates, outlines its workflow, and suggests countermea-
sures. They also demonstrated the use of custom rules

integrated with the YARA search tool to help detect and
prevent ransomware attacks.

Oh et al. [13] automated the process triage during in-
cident response by using a GPT model to extract pro-
cess data from ransomware-infected memory dumps via
the Volatility framework. To accomplish this, a tool called
“volGPT” was developed. It leveraged Volatility plugins
to retrieve information on process lists and VAD regions,
which offers analysis and explanations based on predefined
rules and prompts. Testing with five ransomware sam-
ples showed that volGPT achieved an average detection
accuracy of 94.12%. It also improved triage efficiency by
narrowing down the number of suspicious processes to just
10% of the total, which significantly reduced the analysts’
workload.

Firoozjaei et al. [14] compared three leading memory
forensics tools Volatility, Autopsy, and Redline, in terms
of their effectiveness in analyzing malware behavior and
resource usage. They evaluated each tool across three
malware scenarios and measures their CPU and memory
consumption. Their findings showed that Volatility deliv-
ered the most accurate analysis, while Redline used more
CPU and Autopsy required more memory. Their research
aimed to guide future tool improvements and helped users
to make better-informed decisions.

Lee et al. [15] addressed the challenge of detecting ran-
somware, especially in backup systems like cloud services.
Traditional file- and behavior-based methods struggle with
unknown ransomware and cannot prevent infected files
from being synced to backups. The proposed approach
uses entropy analysis to detect the uniformity of encrypted
files and applies machine learning for classification. This
method effectively identifies ransomware-infected files in
backup systems, enabling recovery of original files. Re-
sults show high detection accuracy with low false positive
and false negative rates, outperforming existing methods.

Prachi and Kumar [16] proposed a reliable method to
detect ransomware in private cloud environments by an-
alyzing the volatile memory of virtual machines. Their
method extracts RAM, file system, and network features
after running both benign and malicious samples, then uses
feature selection and machine learning to assess their ef-
fectiveness. Through four experiments, their method suc-
cessfully distinguished ransomware from benign activity,
with the Random Forest classifier, it showed the highest
accuracy. Their approach offered a strong foundation for
ransomware detection in enterprise cloud systems.

Liu et al. [17] introduced “MRm-DLDet”, a novel frame-
work to detect memory-resident malware-malicious code
that operates only in memory to evade traditional detec-
tion methods. MRm-DLDet captured memory dumps from
virtual machines and transforms them into high-resolution
RGB images. These are processed using a deep learn-
ing pipeline combining ResNet-18 for feature extraction
and a gated recurrent unit (GRU) network with atten-
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tion for classification. A voting layer aggregated results
to determine if malware is present. Tested on a large cus-
tom dataset of over 1.2 million labeled sub-images, MRm-
DLDet achieved a high detection accuracy of 98.34% and
showed strong resistance to mimicry and adversarial at-
tacks, outperforming existing methods.

2.2 Deep Learning-based Ransomware
Detection

Early detection strategies relied heavily on traditional ma-
chine learning models, such as decision trees, support vec-
tor machines (SVM), k-nearest neighbors (KNN), naive
Bayes algorithm, and random forests [7, 18, 19]. Random
forest models, in particular, have demonstrated strong per-
formance differentiating between benign software and ran-
somware [19]. Feature extraction from files, system calls,
and network traffic remains crucial for effective classifica-
tion.

With the rise of advanced evasion tactics and obfus-
cation, researchers have adopted deep learning method-
ologies for more robust detection. Deep Learning mod-
els, such as Convolutional Neural Networks (CNNs) and
various forms of Recurrent Neural Networks (RNNs) like
LSTM and BiLSTM, have shown notable improvements in
both ransomware detection and family-level classification,
even on obfuscated datasets [2, 7]. For instance, the GN-
BiLSTM model achieved up to 99.99% detection accuracy
and improved ransomware categorization and family iden-
tification [7].

Er. Kritika [20] reviewed deep learning-based ran-
somware detection methods, highlighted their strengths
and limitations. They emphasized the potential of hybrid
models for better accuracy but noted challenges like lim-
ited data and complex feature selection.

Sewak et al. [21] explored a deep learning-based malware
detection system using architectures like Auto-Encoders
and Deep Neural Networks on the Malicia dataset. Unlike
previous methods that relied heavily on manual feature en-
gineering, their proposed approach automatically extracts
features and achieves improved results with 99.21% accu-
racy and a 0.19% false positive rate. Their findings suggest
that deep learning offers a general, scalable, and effective
solution for detecting both known and unknown malware.

The convergence of forensics with machine learning mag-
nifies detection strengths through dynamic file and be-
havior analysis, providing actionable evidence and rapid
containment [22, 23]. Notably, the deployment of Soft-
ware Defined Networking (SDN) frameworks offers proac-
tive network-level control, enabling dynamic reconfigura-
tion to isolate threats when ransomware attacks are de-
tected [18]. This hybrid approach enhances both detection
and automated response, mitigating the impact of active
ransomware campaigns.

Shaukat et al. [24] introduced a deep learning-based
malware detection method that combines static and dy-
namic analysis to improve accuracy. It visualizes mal-
ware as a colored image, extracts deep features, and uses
SVM for detection, which avoids complex feature engi-
neering. Their approach outperformed traditional meth-
ods, achieved 99.06% accuracy and a 16.56% improvement
over existing models. They also tackled data imbalance
using augmentation techniques. Their framework is effi-
cient, scalable, and beneficial for the defense industry in
developing better malware detection systems.

3 Proposed Methodology

This chapter presents a rigorous mathematical and compu-
tational model for the proposedAdvanced Ransomware
Detection Framework using Forensics and Deep
Learning. The objective is to establish a formal under-
pinning for the integration of forensic evidence collection,
advanced feature extraction, and machine/deep learning
models capable of detecting, classifying, and attributing
ransomware and benign samples with high accuracy [2].

3.1 System Assumptions and Threat
Model

We consider a monitored computing environment E where
each process Pi (i = 1, 2, . . . , N) interacts with the system,
generates behavioral events (E), and may access the file
system, registry, memory, or network. The threat model
assumes [2]:

1. Both benign and ransomware/malicious processes may
be running in E .

2. Forensic data is periodically collected from system
logs, memory dumps, file traces, network events, and
API calls.

3. The attacker may use obfuscation and anti-forensic
strategies.

4. Unknown or zero-day ransomware families may ap-
pear.

The goal is to mathematically model the detec-
tion/classification process using these observable events
under adversarial conditions.

3.2 Behavioral Event Space

Let S denote the observed system state over time intervals
T = {t1, t2, ..., tn}. At each time tk, the system emits an
event vector:

Ek = [e
(1)
k , e

(2)
k , ..., e

(m)
k ]
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where each e
(j)
k is a measured forensic or behavioral metric

(e.g., API call frequency, entropy of accessed files, number
of registry edits, etc.) [2].

The full dataset is then:

D = {Ek | k = 1, ..., n}

Each event vector Ek is injected with an associated label
yk ∈ {0, 1}, where 0=benign, 1=ransomware.

3.3 Feature Engineering and Forensic Sig-
nals

Let the raw feature matrix X ∈ Rn×m be constructed by
stacking all Ek, k = 1, . . . , n.
Entropy-based Feature: Let H(f) denote the Shan-

non entropy of file f accessed by process Pi, formally:

H(f) = −
∑
x∈A

p(x) log p(x)

where A is the alphabet (e.g., byte values), p(x) is the
empirical frequency in f .

Temporal Feature: For each event type j, sliding win-
dows over T can produce local statistics:

µ
(j)
window =

1

w

k+w−1∑
i=k

e
(j)
i ,

σ
(j)
window =

√√√√ 1

w

k+w−1∑
i=k

(e
(j)
i − µ

(j)
window)

2

for a window length w.
Feature Vector Construction: The complete input

for classification at time tk is the feature vector xk ∈ Rp,
including all engineered features.

3.4 Compact Formalization of the Detec-
tion Problem

Given the data-label pairs D = {(xk, yk)}nk=1, the mathe-
matical goal is to find a function F : Rp → {0, 1, . . . , C},
where C is the number of known ransomware/benign
classes, such that the misclassification risk is minimized:

F ∗ = arg min
F∈H

E(x,y)∼D[I(F (x) ̸= y)]

where H is the function class (e.g., neural networks), and
I is the indicator function.

3.5 Deep Feature Extraction: Autoen-
coder Mathematical Model

To capture high-level representations from raw forensic fea-
tures, an autoencoder is employed [2? ].

Let x ∈ Rp be the input feature vector. The autoen-
coder comprises: - Encoder: z = fenc(x) = σ(Wex+be) -
Decoder: x̂ = fdec(z) = σ(Wdz+ bd)

The contractive autoencoder objective is:

LCAE =
1

n

n∑
k=1

[
∥xk − x̂k∥2 + λ∥∇xk

fenc(xk)∥2F
]

where λ is a penalty parameter.

3.6 LSTM Mathematical Foundation

Given temporal input sequence {xt}Tt=1, the LSTM learns
hidden states ht using cell dynamics:

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf )

ot = σ(Woxt +Uoht−1 + bo)

gt = tanh(Wgxt +Ught−1 + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

where σ is the sigmoid, ⊙ is element-wise multiplication,
and [W∗,U∗,b∗] are learnable parameters.

3.7 Classifier Output and Training Loss

The final classification layer computes:

ŷt = softmax(Wcht + bc)

Training minimizes the cross-entropy:

LCE = − 1

n

n∑
k=1

C∑
j=1

I(yk = j) log ŷk,j

3.8 Ensemble Learning and Pareto Opti-
mization

To address false positive/negative trade-offs, combine K
diverse models {F (1), ..., F (K)}, and aggregate predictions
via weighted voting:

ŷ = argmaxj

(
K∑

k=1

αkI(F (k)(x) = j)

)

Pareto-optimality is used to select weights α, subject to
minimizing both false positive and false negative risk:

min
α∈∆K−1

(
RFP (α), RFN (α)

)
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3.9 Entropy-Driven Anomaly Detection
Model

The entropy model considers time-dependent entropy in
files during process execution. Define entropy delta:

∆Ht = Hafter
t −Hbefore

t

Monitor ∆Ht for statistically significant deviations using
threshold-based or probabilistic methods[6].

3.10 Performance Metrics

Let TP , TN , FP , FN denote true/false positive/negative
counts.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

ROC/AUC, F1-score, and confusion matrix further quan-
tify classification quality.

This formal system model mathematically underpins
each step of the proposed forensic and deep learning ran-
somware defense framework data, features, learning, and
feedback. Each module’s parameters and functions have
been specified, enabling full implementation and further
analytical study.

4 Proposed Methodology and Al-
gorithm

The proposed framework integrates digital forensics with
deep learning to detect ransomware attacks effectively. The
methodology comprises four key phases: data acquisition,
forensic analysis, feature engineering, and deep learning-
based classification. A hybrid model is built by combining
static and behavioral features from system activities and
logs, enabling early detection of both known and novel ran-
somware variants.

4.1 System Architecture

The proposed system architecture includes the following
components:

1. Data Collection Module: Captures system calls,
registry changes, network activity, and file modifica-
tions during software execution.

2. Forensic Preprocessing Engine: Analyzes raw
data artifacts using digital forensics tools to extract
meaningful indicators such as entropy levels, execu-
tion trace, and modified paths.

3. Feature Engineering Layer: Extracts static and
dynamic features, including opcode sequences, en-
tropy, API calls, memory usage, and file system be-
haviors.

4. Deep Learning Classifier: Uses a CNN-LSTM hy-
brid model to learn spatial and temporal patterns in
ransomware behaviors.

5. Detection and Alert System: Flags suspicious ac-
tivities and generates forensic logs for analysts.

4.2 Algorithm Design

The algorithm below outlines the detailed process of the
ransomware detection framework.

Algorithm 1 Ransomware Detection using Forensics and
Deep Learning

1: Input: Execution data D, Pre-trained modelM
2: Output: Classification label C ∈
{Ransomware,Benign}

3: procedure DetectRansomware(D,M)
4: A← ForensicAnalysis(D)
5: F ← ExtractFeatures(A)
6: Fnorm ← Normalize(F )
7: C ←M.predict(Fnorm)
8: return C
9: end procedure

10: procedure ForensicAnalysis(D)
11: Extract logs: API calls, registry access, file I/O
12: Analyze entropy, timestamps, encryption patterns
13: Return structured artifact set A
14: end procedure
15: procedure ExtractFeatures(A)
16: Extract statistical and behavioral features
17: Include temporal sequences (e.g., API call order)
18: Return feature vector F
19: end procedure

4.3 Explanation of Methodology

4.3.1 Data Acquisition

Behavioral data is collected in a controlled sandbox en-
vironment using malware execution sandboxes such as
Cuckoo or Any.Run. This includes monitoring API calls,
file system changes, and registry modifications.

4.3.2 Forensic Analysis

Forensic analysis identifies indicators of compromise
(IOCs) through analysis of metadata and execution arti-
facts. Entropy levels are calculated to detect encrypted
payloads or packed binaries.
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Figure 1: Accuracy comparison of various machine learning models

4.3.3 Feature Engineering

Both static (e.g., byte entropy, strings) and dynamic (e.g.,
sequences of API calls) features are extracted. Temporal
dependencies are encoded to reflect how ransomware oper-
ates over time.

4.3.4 Deep Learning Classification

A hybrid model combining Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks
is used. CNNs extract local patterns from feature vectors,
while LSTM layers model temporal behavior to distinguish
ransomware from benign software.

4.3.5 Evaluation Metrics

Model performance is evaluated using precision, recall, F1-
score, and confusion matrix analysis. AROC (Area Under
Receiver Operating Characteristic) curve is also used for
binary classification.

The proposed methodology leverages the strengths of
both forensics and deep learning. By combining artifact-
level analysis with deep behavior learning, the framework
is capable of identifying advanced and evasive ransomware
threats, including zero-day variants.

5 Simulation Result

The performance of the proposed ransomware detection
framework was evaluated and compared with baseline ma-
chine learning and deep learning models. Figure 1 shows

the accuracy achieved by different classifiers on a labeled
dataset containing both ransomware and benign samples.

5.1 Accuracy Comparison

The proposed CNN+LSTM hybrid model outperformed
traditional machine learning classifiers such as Support
Vector Machine (SVM) and Random Forest, as well as
standalone deep learning models like CNN and LSTM. The
results demonstrate the effectiveness of combining spatial
and temporal feature learning for behavior-based malware
classification.

• SVM: Achieved an accuracy of 85%. Although effi-
cient, it lacks the capacity to capture deep sequential
patterns in ransomware behavior.

• Random Forest: Slight improvement at 88% due to
ensemble nature, but still underperforms in temporal
modeling.

• CNN: Achieved 91% accuracy, showing strength in
spatial pattern recognition.

• LSTM: Reached 93% by modeling the sequence of
system events effectively.

• Proposed CNN+LSTM: Achieved highest accu-
racy of 96% by leveraging both convolutional spatial
filters and temporal dependencies.

The integration of forensic data (such as entropy, file ac-
cess patterns, and registry changes) significantly improved
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feature richness and context. The sequential modeling ca-
pability of LSTM was enhanced by CNN-based feature
extraction, improving overall generalization.The proposed
model demonstrated better zero-day detection capabilities
in the presence of unknown ransomware variants.

The result analysis validates the proposed framework’s
superiority in detecting ransomware with higher precision
and fewer false positives. The hybrid deep learning model
coupled with forensic analysis proves to be a robust ap-
proach for proactive ransomware mitigation.

6 Conclusion and Future Work

The system architecture leveraged both static and dynamic
data collected through sandbox execution, and incorpo-
rated forensic indicators such as entropy levels, system
event traces, and registry modifications. A hybrid deep
learning model combining Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) networks
was employed to capture both spatial features and tempo-
ral behavior of ransomware.

Experimental results demonstrated that the proposed
CNN+LSTM model outperformed traditional machine
learning classifiers (e.g., SVM, Random Forest) and stan-
dalone deep learning models. The hybrid approach
achieved a detection accuracy of 96%, showing robustness
against both known and previously unseen ransomware
variants.

Overall, this work highlights the effectiveness of com-
bining digital forensics with behavior-aware deep learning
models to enhance ransomware detection and incident re-
sponse capabilities.

While the proposed framework has shown promising re-
sults, there are several directions in which this work can
be extended:

1. Real-time Detection and Deployment: Integrate
the model into a real-time endpoint detection and re-
sponse (EDR) system, allowing live monitoring and
prevention of ransomware attacks.

2. Explainable AI (XAI): Develop interpretable
deep learning models that can provide human-
understandable justifications for classification deci-
sions, aiding digital forensic investigators.

3. Cloud and IoT Ransomware: Extend the dataset
and model to support detection of ransomware target-
ing cloud environments and Internet-of-Things (IoT)
devices.

4. Adversarial Robustness: Evaluate and harden the
model against adversarial machine learning attacks
that attempt to evade detection through feature ma-
nipulation.

5. Federated Learning: Implement privacy-preserving
collaborative learning techniques where multiple orga-
nizations can train a shared ransomware model with-
out exposing sensitive internal data.

6. Forensic Automation: Integrate automated foren-
sic triage systems to support rapid incident investiga-
tion and root cause analysis after a ransomware de-
tection event.
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